
 

 
 
 
 
 
 

Document Number: H2020-ICT-52/RISE-6G/D4.2 
 

Project Name: 
Reconfigurable Intelligent Sustainable Environments for 6G Wireless Networks  

(RISE-6G) 
 
 

Deliverable 4.2 
 

Multi-user techniques and connectivity of RIS based 
communication and mobile edge computing (Intermediary 

Specifications) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Date of delivery: 30/06/2022 Version: 1.0 
Start date of Project: 01/01/2021 Duration: 36 months 



 

 

 

RISE-6G Public 2 
 

 
Deliverable D4.2 

Multi-user techniques and connectivity of RIS 
based communication and mobile edge 
computing (Intermediary Specifications) 

Project Number: H2020-ICT-52 / 101017011 

Project Name: Reconfigurable Intelligent Sustainable Environments 
for 6G Wireless Networks 

 

 

Document Number: H2020-ICT-52/RISE-6G/D4.2 

Document Title: Multi-user techniques and connectivity of RIS based 
communication and mobile edge computing (Intermediary 
Specifications) 

Editor(s): Marco Di Renzo (CNRS) and Fabio Saggese (AAU) 

Authors: Placido Mursia (NEC), Francesco Devoti (NEC), Paolo 
Di Lorenzo (CNIT), Sergio Barbarossa (CNIT), Marco Di 
Renzo (CNRS), Fatima Ezzahra Airod (CEA), Emilio 
Calvanese Strinati (CEA), Kyriakos Stylianopoulos 
(NKUA), George Alexandopoulos (NKUA) 

Dissemination Level: PU 

Contractual Date of Delivery: 30/06/2022 

Security: Public 

Status: Final 

Version: 1.2 

File Name: RISE-6G_D4.2_Final.docx 

 

  



 

 

 

RISE-6G Public 3 
 

Abstract 

This deliverable provides the results of the RISE-6G proposals on multi-user techniques for 
RIS-aided communication to work package 4 “RIS for Enhanced Connectivity and Reliability”, 
as well as initial performance evaluations of these proposals.  
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1 Introduction  
In the present deliverable, we report the research work carried out by the consortium of RISE-
6G on multi-user algorithms and protocols for application to RIS-aided smart radio 
environments. The research findings reported in the present deliverable are in agreement with 
the initial specifications reported in deliverable D4.1 titled “On deployment and control strategies 
of RIS based connectivity”. The results reported in the present deliverable constitute initial 
specifications that will be further elaborated and finalized in deliverable D4.4. 

1.1 Deliverable objectives 

The objectives of the present deliverable are the following: 

(1) To report specifications and intermediate results on fundamental performance limits in 
RIS-aided smart radio environments, which account for RIS-aided channel models and 
the associated control overhead. 

(2) To report specifications and intermediate results on the design and optimisation of 
control signalling protocols, channel estimation algorithms, and resource allocation and 
scheduling policies to support the efficient deployment of RISs in smart radio 
environments. 

(3) To report specifications and intermediate results on the design and optimisation of 
resilient, energy efficient, and joint communication and computation mechanisms with 
low electromagnetic field exposure for application to power- and latency-constrained 
(edge) cloud services. 

1.2 Deliverable structure 

After reviewing the key performance metrics and KPI specified in deliverable D4.1, which drives 
the development of the research work within WP4 and the RISE-6G project, the present 
deliverable is logically organized in compliance with the tasks of WP4. More specifically, 
deliverable D4.2 is organized in three main macro sections that are focused on: 

(1) The fundamentals of multi-user network connectivity for RISE systems 

(2) The design of multi-user techniques for RISE communications 

(3) The design of multi-user techniques for RIS-empowered mobile edge computing  

In this document, multi-user can refer also to multi-RIS, systems which requires coordination 
techniques as well. Moreover, we remark that with RISE system we refer to every kind of 
network including RISs, while with “RIS-empowered” or “RIS-aided” we refer to systems where 
a single or multiple RISs are used to enhance the achievable performance. 
 
As far as the first macro section is concerned, we report seven main research and technology 
contributions made by the RISE-6G consortium, listed as follows: (i) design of efficient 
beamforming schemes for application to RIS-aided IoT massive access; (ii) design of RIS-aided 
robust and reliable air-to-ground communication networks enabled by UAVs; (iii) design of 
frequency-agnostic control schemes for smart radio environments: (iv) design of self-configuring 
RISs with reduced control channel requirements; (v) design of efficient optimization methods 
based on quantum annealing; (vi) design of efficient optimization methods based on 
electromagnetic-consistent models for RISs; (vii) analysis of the degrees of freedom of RIS-
aided channels based on ray tracing methods; and (viii) development of a frequency mixing 
architecture for RIS-aided nonlinear wireless channels. 
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As far as the second macro section is concerned, we report seven main scientific contributions 
made by the RISE-6G consortium, listed as follows: (i) design of tensor-based channel tracking 
methods for RIS-aided multi-user channels; (ii) design of optimization methods for sum-rate 
optimization that rely on statistical channel state information for reducing the overhead; (iii) 
concept and design of random access protocols based on beam sweeping methods; (iv) design 
of efficient orchestration algorithms for system optimization based on reinforcement learning 
methods; (v) optimization of RISs based on supervised learning methods and the users’ 
locations; (vi) design of multi-beamforming algorithms to enable the reconfigurability at the 
physical layer. 
 
As far as the third macro section is concerned, we report four main scientific contributions made 
by the RISE-6G consortium as the following (i) joint optimization and scheduling of MEC-aided 
communication and computation tasks; (ii) design of MEC-aided schemes for application to RIS-
assisted wireless links in the millimetre-wave frequency band; (iii) design of adaptive federated 
learning schemes for smart radio environments; and (iv) design of dynamic computation 
offloading methods for application to frequency-selective RIS-aided channels. 
 

Finally, the present deliverable is concluded with a summary of the main obtained scientific 
contributions. 

1.3 Definitions and taxonomy 

The main notation symbols appearing throughout the document are listed in Table 1-1. 
Miscellaneous self-contained notation introduced in certain contributions will be defined per 
case. In listed figures and algorithms, the notation may follow that of the corresponding 
publication, for a more consistent presentation. 

Table 1-1: Definition of the main notation symbols. 

Parameter Notation Parameter Notation Parameter Notation 
Total 
number of 
UEs 

𝐾 Receive 
signal at UE 
k 

𝑦௞ Transmit 
symbol for 
UE k 

𝑠௞ 

RIS phase 
shift matrix 

𝚽 Number of 
RIS 
elements 

𝑁 = 𝑁௫ × 𝑁௬ BS 
precoder 

𝒗 

Power 
budget at the 
BS 

𝑃 Working 
wavelength 

𝜆 Receiver 
noise 

𝑛௞  

Sum rate 𝑅௧௢௧ Rate of UE k 𝑅௞ Working 
frequency 

𝑓 

  

2 Metrics and KPIs 
This section introduces the KPIs that are relevant for quantifying the performance for RIS-
empowered multi-user connectivity and edge-computing. The metrics have been introduced in 
D4.1, and are repeated here for the purpose of presenting a self-contained document. There is 
a close correspondence with what is described in Deliverables D2.2 and D2.4 of this project 
which concern the general KPI definitions. However, this document includes a more detailed 
description of the metrics specifically relevant to WP4 and the algorithmic methodologies to be 
presented. 
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The metrics presented below constitute ubiquitous performance indicators in wireless 
communications, which, in most cases, have been redefined or extended to account for the 
introduction of the RIS in the communication system. 

 

2.1 Latency 

In a communications system, latency expresses the time delay between the initiation of an 
event and the actuation of its effect. It is one of the key performance metrics in current and next-
generation communications. Indeed, 6G specifications target end-to-end (E2E) latency 
objective of up to 10μs [GRT21]. From a wireless system engineering perspective, we consider 
the Physical Layer (PL) latency, which is given by the sum of the following components [XH21]: 

 

𝑇௉௅ = 𝑇௤௨௘ + 𝑇௧௧௧ + 𝑇௣௥௢௖ + 𝑇௣௥௢௣ + 𝑇௥௘௧௥ 

where 

 𝑇௤௨௘ is the queueing latency arising from the waiting time of the current packet until the 
transmission of the previous packet is completed. 

 𝑇௧௧௧  (time-to-transmission) is the time needed for the packet to be forwarded to the 
physical link. 

 𝑇௣௥௢௖ denotes the processing latency, which accounts for the operations applied to the 
transmitted data (e.g., encoding/decoding, precoding/combining, 
modulation/demodulation, channel interleaving and estimation, scrambling, data and 
control multiplexing). 

 𝑇௣௥௢  expresses the propagation time of the electromagnetic waves takes to reach the 
destination. 

 𝑇௥௘௧௥  captures the delay induced by retransmissions in case of packet loss and is, 
generally, a function proportional to the number of retransmissions, 𝑇௣௥௢௖ and 𝑇௣௥௢௣. 

In the context of RIS-based connectivity, the 𝑇௣௥௢௖ component is of particular interest since it is 
directly affected by the deployment and control strategies adopted. We remark that the channel 
estimation processing and the optimization of the RIS configuration may not be needed to 
forward the packet to the physical link. As a results, these processes (or a part of them) can be 
performed in parallel, reducing de facto the overall time 𝑇௣௥௢௖. 

Furthermore, depending on the system under examination, specific sub-components of the 
processing latency can be defined. In the sequel, we also highlight the latency in the MEC 
context, which depends on the nature of the computation offloading. Since operations involving 
MEC consider a more elaborate system, we consider the definition of the E2E latency, which is 
a more general definition than the PL latency given above. In particular, the delays associated 
with the physical layer operations are captured in the UL and DL  communication times, as 
defined below. 

Static computation offloading 

Static computation offloading deals with brief time applications, where mobile users send a 
single computation request, typically also specifying a service time. Let 𝐴௞(𝑡) be the number of 
input bits required by the application run by user 𝑘 at time 𝑡, and let 𝑤௞(𝑡) be the number of 
CPU cycles associated with the computing task. Then, the overall E2E latency of UE 𝑘  is 
composed of three terms: (i) an UL communication time ∆௞

௨(𝑡), needed by the device to send 
the input bits to the BS; (ii) a computation time ∆௞

௖ (𝑡), needed by the Edge Server (ES) to 
process the input bits and run the specific application; (iii) a DL communication time ∆௞

ௗ(𝑡), 
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needed by the BS to send the result of computation back to the UE(s). In summary, the overall 
E2E latency at time 𝑡 is given by: 

𝛥௞(𝒕) = ∆𝒌
𝒖(𝒕) +  ∆𝒌

𝒄 (𝒕) + ∆𝒌
𝒅(𝒕) =  

𝑨𝒌(𝒕)

𝑹𝒌(𝒕)
+

𝒘𝒌(𝒕)

𝒇𝒌(𝒕)
+

𝑩𝒌(𝒕)

𝑹𝒌
𝒅(𝒕)

 

where 𝑅௞(𝑡) is the uplink rate from UE 𝑘 to the BS, 𝑓௞(𝑡) is the CPU frequency allocated by the 
edge server to UE 𝑘, 𝑅௞

ௗ(𝑡) is the downlink rate from the BS to UE 𝑘, and 𝐵௞(𝑡) is the number 
of output bits of the application run by the ES on behalf of UE 𝑘. In static computation offloading, 
communication and computation resources are orchestrated to guarantee that the overall E2E 
delay  𝛥௞(𝑡) is less than or equal to an application-dependent requirement, say 𝐿௞ for all 𝑡. 

Dynamic computation offloading 

In dynamic computation offloading, each device continuously generates data 𝐴௞(𝑡)  to be 
processed (e.g., the transmission of a video recorded by a UE to be processed by the ES for 
pattern recognition or anomaly detection). Then, a queueing system is used to model and 
control the dynamic data generation, transmission, and processing. At each time slot 𝑡, each 
user buffers data in a local queue 𝑄௞

௟ (𝑡) and transmits them to the AP at the transmission rate 
𝑅௞(𝑡). The local queue update follows the rule: 

𝑸𝒌
𝒍 (𝒕 + 𝟏) = 𝒎𝒂𝒙 ቀ𝟎, 𝑸𝒌

𝒍 (𝒕) − 𝝉𝑹𝒌(𝒕)ቁ + 𝑨𝒌(𝒕) 

where 𝜏 is the duration of the time-slot used for scheduling the resources. 

Then, the BS receives data from each device 𝑘 and sends the data to the ES, which processes 
𝐽௞ bits-per-cycle, where 𝐽௞ is a parameter that depends on the application offloaded by device 
𝑘. Thus, the computation queue at the ES evolves as: 

𝑸𝒌
𝒄 (𝒕 + 𝟏) = 𝐦𝐚𝐱(𝟎, 𝑸𝒌

𝒄 (𝒕) − 𝝉𝒇𝒌(𝒕)𝑱𝒌 ) + 𝐦𝐢𝐧 (𝑸𝒌
𝒍 (𝒕), 𝝉𝑹𝒌(𝒕)) 

Finally, the BS sends back to each user the bits resulting from the computation, draining a 
downlink communication queue that evolves as: 

𝑸𝒌
𝒅(𝒕 + 𝟏) = 𝐦𝐚𝐱൫𝟎, 𝑸𝒌

𝒅(𝒕) − 𝝉𝑹𝒌
𝒅(𝒕) ൯ + 𝒄𝒌𝐦𝐢𝐧 (𝑸𝒌

𝒄 (𝒕), 𝝉𝒇𝒌(𝒕)𝑱𝒌) 

where 𝑐௞ denotes the ratio between output and input bits of the application required by user 𝑘. 
Thus, the E2E delay experienced by offloaded data is related to the sum of the three queues 

𝑸𝒌
𝒕𝒐𝒕(𝒕) =  𝑸𝒌

𝒍 (𝒕) +  𝑸𝒌
𝒄 (𝒕) + 𝑸𝒌

𝒅(𝒕). 

From Little’s law, given an average data arrival rate �̅�௞ = 𝔼[𝐴௞(𝑡)] , (where 𝔼[. ]  is the 
expectation) the average latency experienced by a new data unit from its generation to its 
computation at the ES is: 

𝑫ഥ𝒌 = 𝐥𝐢𝐦
𝑻→ஶ

 
𝟏

𝑻
෍ 𝔼 ቈ

𝑸𝒌
𝒕𝒐𝒕(𝒕)

 𝑨ഥ𝒌

቉

𝑻

𝒕ୀ𝟏

. 

Thus, in this dynamic context, an average E2E delay constraint can be written as: 

𝐥𝐢𝐦
𝑻→ஶ

𝟏

𝑻
෍ 𝔼[𝑸𝒌

𝒕𝒐𝒕(𝒕)]

𝑻

𝒕ୀ𝟏

≤ 𝑸𝒌
𝒂𝒗𝒈

= 𝑫𝒌
𝒂𝒗𝒈

𝑨ഥ𝒌 

More sophisticated probabilistic constraints can also be imposed on the maximum tolerable 
delay. 

2.2 Spectral efficiency and throughput 

In this sub-section, we provide an example of definition of the SE metric, which concerns the 
rate of reliably transmitted information over the allocated communication bandwidth 𝐵. The 
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central concept behind spectral efficiency is the (received) SNR which expresses the ratio 
between the power of the transmitted signal as it reaches the UE, over the power of the 
background noise. The presence of the RIS affects the received power of the end-to-end 
channel by reflecting the impinging EM waves so that they form beams of concentrated power 
to desired locations. For multi-user communications, this idea extends to the SINR, which also 
captures the interference signals appearing due to the simultaneous communication of multiple 
ends. 
Formally, the achievable SE with respect to a UE depends on the UE’s SINR. For instance, the 
achievable SE with respect to a UE k is given by 
 

𝐒𝐄𝒌 =  𝐥𝐨𝐠𝟐(𝟏 + 𝐒𝐈𝐍𝐑𝒌)     (𝐛𝐢𝐭𝐬/𝐬/𝐇𝐳) 
 
and the sum-rate over the allocated bandwidth (i.e., the sum of individual rates for all UEs) reads 
as: 

𝓡 =  ෍ 𝐒𝐄𝒌

𝒌

 

Finally, the throughput of the considered system is finally given by  𝑻 =  𝑩𝓡. 
 

2.3 Reliability 

We define the notion of reliability of the communication by considering a given minimum SINR 
threshold denoted as 𝜃, which is necessary to decode the incoming signal. We define the set of 
UEs whose received SINR is greater than 𝜃 as the following 

𝓤 = {𝒌 ∶  𝐒𝐈𝐍𝐑𝒌 ≥ 𝜽} 
RIS-enabled systems are expected to enlarge the network area in which the received SINR of 
a given UE is above a given threshold, and thus sufficient for successful decoding of the 
incoming signal. 
 

2.4 Bit Error Rate and Bit Error Ratio 

Considering a digital transmission, the BER defines the number of bits received incorrectly by 
the end node per unit time. The normalized version of this metric, the Bit Error Ratio concerns 
the number of incorrect bits as a proportion of the total number of bits transmitted. 
 

2.5 Energy efficiency 

The EE for a downlink communication from a BS to a UE is defined as follows: 

 𝑬𝑬 =  𝓡/𝐏 (𝐛𝐢𝐭𝐬/𝐬/𝐇𝐳/𝐖𝐚𝐭𝐭)   
 

where 𝓡 is the sum data spectral efficiency and 𝑃 is the total power consumption, including the 
circuitry and the power used for transmission/reception. 

2.6 Channel estimation accuracy 

For the specific problem of channel estimation, we consider the NMSE to assess the 
performance of the estimation process. Specifically, NMSE (in dB) is defined as: 

𝐍𝐌𝐒𝐄 =  𝔼 ቎10 logଵ଴

ฮ𝐇 − 𝐇෡ฮ
𝑭

𝟐

‖𝐇‖𝑭
𝟐 ቏ 

where 𝐇  and 𝐇෡  are the true and estimated channel matrices, respectively, and ‖∙‖ி  is the 
Frobenius norm. 
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3 Fundamentals of Multi-User Network Connectivity for RISE 
Systems 

3.1 Joint Active and Passive Beamforming 

In this section, we give the most general definition of the multi-user problem in RIS-aided 
wireless networks. In particular, we show how the key aspect is the joint optimization of the 
(active) beamforming at the BS and the (passive) beamforming at the RIS. In the default 
settings, a given number of users 𝐾 is scheduled to be served in the same time-frequency 
resources. 

Focusing on the downlink, let 𝑦௞ denote the received signal at the (single-antenna) UE 𝑘, which 
is defined as 

𝑦௞ = (𝒉௞
ு𝚽𝑮 + 𝒉ௗ,௞

ு )𝒗 𝑠௞ + 𝑛௞ 

where 𝒉௞
ு, 𝑮, and 𝒉ௗ,௞

ு  denote the channel vectors from the RIS to the UE, from the BS to the 
RIS and from the RIS to the UE, respectively, and all other notation are defined as in Section 
2.1. Here, the BS precoder and the RIS phase-shifting matrix contribute together to the received 
signal quality. Hence, their optimization must be jointly considered. Let 𝑓(∙) be the considered 
network utility function, such that we can define the following optimization problem 

max
𝚽,𝒗

𝑓(𝚽, 𝒗) 

s. t.    ห[𝚽]𝒊,௜ห
ଶ

≤ 1, ห[𝚽]௜,௝ห
ଶ

= 0 
          ‖𝒗‖ଶ ≤ 𝑃 

where the first constraint is required to guarantee that the phase-shift configuration at the RIS 
is given by a diagonal matrix and that the incoming signal is not amplified, while the second 
constraint limits the transmit power at the BS. 

In this regard, the choice of the objective function is of paramount importance, especially for 
massive access scenarios. Indeed, it must be chosen to provide high-performing solutions while 
guaranteeing efficiency and scalability. While several existing works focus on maximizing the 
rate of each UE (see, e.g., [WZ19]), which is a highly-challenging non-convex problem, in 
[MSG21] the SMSE of the received signal has been shown to have a convex structure in the 
two optimization variables separately, i.e., 𝚽 and 𝒗. Note that in the most general definition of 
such problem, the RIS is treated as an ideal hardware capable of any continuous phase-shift. 
However, several existing works consider the more practical case of a discrete set of phase-
shifting configurations.  

The above-referenced signal model is based on conventional communication and antenna 
theory and assumes absence of mutual coupling (i.e., half-wavelength inter-element distance), 
far-field, and independence between the signal attenuation and phase shift at each RIS unit cell 
[HZA19]. Depending on the application environment and the available practical hardware, some 
of these assumptions may not hold in real-life scenarios. Moreover, accurate channel modelling, 
such as via the ray tracing methods outlined in Section 3.5.6, is of high importance to gain 
important insights and understandings on the achievable performance of RIS-aided networks. 

In this regard, an electromagnetic-compliant and mutual coupling aware channel model was 
recently introduced in [GD21], which is equivalent to a MIMO channel. Under this setting, the 
above signal model is modified as follows (for the case of single-antenna transmitter) 

𝑦௞ = 𝐻௘ଶ௘ 𝑠௞ + 𝑛௞ 
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where the channel coefficient is given by 

𝐻௘ଶ௘ = 𝑦଴(𝑍ோ் − 𝒁ோௌ(𝒁ோூௌ + 𝒁ௌௌ)ିଵ𝒁ௌ்), 

with 𝑦଴  accounting for internal impedance of the voltage generator of the transmitter, load 
impedance of the receiver, and self-impedance of the transmit and receive antennas, whereas 
𝒁௑,௒ is the (self) mutual impedance between 𝑋 and 𝑌, where 𝑇, 𝑅, 𝑆 stand for the transmitter, the 
receiver and the RIS, respectively. Moreover, 𝒁ோூௌ represents the tunable (diagonal) impedance 
matrix at the RIS. Under this model, the optimization procedure requires to deal with the inverse 
operation, which further compounds the complexity of designing optimal RIS strategies 
[A21][QD21]. 

3.2 Static versus Nomadic RIS 

In the previous section, we assumed a static RIS position, e.g., mounted on the façade of a 
building or indoor wall. However, this might not be the case for some novel RIS use cases. 

In this regard, consider the newly-defined concept of air-to-ground network, whereby aerial 
devices, such as UAVs, are used to facilitate the communication between a BS and a set of 
target UEs by flying above obstacles and providing enhanced connection reliability. In this 
context, RISs can be leveraged to alleviate the limited battery life of such devices, while 
guaranteeing advanced beamforming capabilities. 

Owing to the non-static RIS position, the aforementioned multi-user problem formulation is 
modified by introducing the variation of the RIS position and orientation over time 
[DMS22][PSZ21]. 

Moreover, since UAVs might be subject to unwanted perturbations caused by meteorological 
phenomena, the system needs to take into account a degree of uncertainty on the (nominal) 
position and orientation of the RIS [MDS21]. 

3.3 Exploiting the Frequency Domain in RISE Systems 

While in Section 3.1, the problem of multi-user network connectivity in RISE systems is treated 
by designing optimized beamforming techniques both at the RIS and at the BS, advanced RIS 
hardware design may be exploited to achieve multi-frequency operation, without the need of 
redundant deployments. 

Indeed, novel RIS designs allow to operate on different frequency bands with the same 
hardware. In this way, the users may be scheduled in the frequency-domain as well and/or 
multiple RATs may be supported. In [MAM22], the RIS unit cell is replaced by a reconfigurable 
patch-antenna, i.e., an antenna whose operating frequency may be dynamically configured. By 
doing so, and depending on the chosen working frequency, the inter-element spacing may be 
different than the conventional half-wavelength. As a result, the array response may be 
corrupted by mutual coupling effects. A solution to this problem may be given by selectively 
turning-off antenna elements, as to restore independence across the array of antennas. The 
choice of the elements activation requires additional optimization, which is coupled with the 
current propagation environment and application scenario. 

Moreover, the frequency dimension can be exploited for reducing the overhead of the CSI 
estimation. The RIS design in [RSA20] Erreur ! Source du renvoi introuvable. is capable of 
manipulating the frequency of the incident signals. Such effect can be exploited to derive 
frequency-mixing operating RISs, whereby the narrowband transmitted signal is expanded in 
the frequency domain by creating additional paths that may lead to ideal i.i.d propagation 
environments. Since such paths are decoupled in the frequency domain, one single pilot is 
sufficient for channel estimation, as proven in [YDW21]. 
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3.4 Autonomous RISs 

The above-mentioned methods rely on a control channel between the BS and the RIS, which is 
used to communicate to the RISC the optimized phase-shift configuration. Moreover, the BS 
exploits the available CSIT to optimize the given network utility metric. 

In real-life scenarios, such assumptions may be unpractical or even unfeasible. Hence, recent 
works have introduced the concept of self-configuring RISs, whereby the RISC exploits only 
locally-available CSI to automatically find the best RIS configuration. 

In [ADS22], the authors propose to embed the RIS with basic sensing capabilities and denote 
it with hybrid RIS (HRIS). In particular, a fraction of the incident signal is redirected to a sensing 
branch on the RIS. Both signal components are phase-shifted by the same amount, which is 
different for each unit cell. During uplink transmission, the power of the signal obtained by 
summing-up all the outputs of sensing branches across the array can be exploited to infer the 
location of the intended receiver. Such information, together with the known BS position, is then 
exploited to self-configure the RIS by aligning it to the direction of maximum power as computed 
by the sensing branch. 

3.5 Contributions from RISE-6G 

The following table lists the relevant contributions from RISE-6G in the multi-user connectivity 
design for RISE systems and summarizes the key system parameters. 

Table 3-1: Fundamentals of multi-user network connectivity: Contributions from RISE-6G. 

Parameter A-0: 
Reconfigurable 
Intelligent 
Surfaces 
Enabling 
Beamforming for 
IoT Massive 
Access 

A-1: RIS-
Empowered UAV 
Communications 
for Robust and 
Reliable Air-to-
Ground Networks 

A-2: A 
Frequency-
Agnostic RIS-
based solution 
to control the 
Smart Radio 
Propagation 
Environment 

A-3: A Self-
Configuring 
RIS Solution 
Towards 6G 

Objective function Minimize SMSE Maximize minimum 
SNR 

Maximize SLNR Maximize rate 

Optimization 
variables 

RIS phase-shifts 
and BS precoder 

RIS phase-shifts 
and BS precoder 

RIS phase-
shifts, activation 
profile, and BS 
precoder 

RIS phase-
shifts 

CSI Perfect Statistical 
knowledge 

Perfect Unknown 

#BS 1 1 1 1 

#RIS 1 1 1 1 

Continuous/quantized 
phase-shifting 

Both Continuous Continuous Continuous 

Parameter A-4: Statistical 
mechanics 
methods for RIS 
optimization: 
Ising 
Hamiltonian and 
Quantum 
Annealing 

A-5: Mutual 
Coupling Aware 
Sum-Rate 
Optimization of 
Reconfigurable 
Intelligent 
Surfaces Based 
on a Mutual 

A-6: Degree-of-
Freedom 
estimation 
from ray 
tracing 

A-7: 
Frequency-
Mixing RIS for 
Nonlinear 
Wireless 
Propagation 
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Impedance 
Channel Model 

Objective function Maximize SNR Maximize sum rate Maximize 
Diversity Gain 

Minimize 
number of pilot 
sent during 
channel 
estimation 

Optimization 
variables 

RIS phase-shifts RIS tunable 
impedance matrix 

Precoding Matrix 

Transmiting RIS 
basis functions, 
position and 
dimension 

Continuous 
RIS phase-
shifts  

CSI - Perfect Perfect - 

#BS - Multiple 1 1 

#RIS 1 Multiple 1 1 

Continuous/quantized 
phase-shifting 

Quantized Continuous - Continuous 

 

 

3.5.1 Contribution #A-0: Reconfigurable Intelligent Surfaces Enabling Beamforming 
for IoT Massive Access 

Motivation and context 

We consider a beyond 5G massive access scenario in a heterogeneous IoT multi-UE cellular 
network consisting of a multi-antenna BS serving a large set of single-antenna UEs with the aid 
of an RIS to cope with NLoS paths [MSG21]. Figure 3-1 depicts the considered network where 
the number of UEs is large and there is no specific assumption on their hardware characteristics, 
ranging from cars to phones, tables, or wearables. In this context, we claim that active 
beamforming via an antenna array at the transmitter side and passive beamforming in the 
channel via a RIS can complement each other and provide even larger gains when they both 
are jointly optimized. 

 

Figure 3-1: Heterogeneous beyond 5G IoT network 
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Specifically, we consider an 𝑀-antenna BS that wants to serve 𝐾 single-antenna UEs with the 
aid of an 𝑁-element RIS. We further assume perfect CSIT, as to give a fundamental upper 
bound on the achievable performance of such a system. 

 

Methodology 

The main novelty of this contribution stems from exploiting the SMSE as an optimization 
objective. Given the receive signal 𝑦௞ ∈ ℂ at UE 𝑘 and its corresponding transmit symbols 𝑠௞ ∈
ℂ, the SMSE is given by 

𝑆𝑀𝑆𝐸 =  ෍ 𝑀𝑆𝐸௞

௄

௞ୀଵ

 

= ෍〖𝐸[|𝑦௞ − 𝑠௞|〗ଶ]

௄

௞ୀଵ

 

Interestingly, such metric reveals a convex structure in the two optimization variables 
separately, namely the precoding strategy at the transmitter and the RIS parameters. This 
allows to design very efficient iterative algorithms for RIS control.  Specifically, we present 
RISMA, a RIS-aided Multiuser Alternating optimization algorithm that jointly optimizes the 
beamforming strategy at the transmitter (a BS) and the RIS parameters to provide high-
bandwidth low-cost connectivity in massive IoT scenarios  [MSG21]. 

It is important to highlight that the SMSE is not necessarily fair among the UEs, since it focuses 
on optimizing the overall system performance. Hence, UEs in good channel conditions will 
obtain a higher overall transmission rate. 

Moreover, we adapt RISMA, which provides a solution from a theoretical perspective, to 
accommodate practical constraints when using low-resolution RISs that are comprised of 
antenna elements that can be activated in a binary fashion. In this way, these are RISs that only 
support phase shift values from a discrete set, rather than any real value from a range, and 
further compound our problem [HZD20], [DDC20]. To address this scenario, we propose Lo-
RISMA, which decouples the optimization of the binary activation coefficients and the quantized 
phase shifts. The coefficients are optimized via SDR while the phase shifts are obtained by 
projecting the ideal continuous phases onto the given discrete space. 

 

Results and outcomes 

As depicted in Figure 3-2, the proposed RISMA approach outperforms conventional SotA 
approaches such as MMSE and ZF precoding (see [PHS05] and [SSH04], respectively). In 
particular, we demonstrate its performance in terms of achievable sum rate versus the number 
of BS antennas 𝐾 and for increasing number of UEs 𝐾. 
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Figure 3-2: Sum rate performance of RISMA versus SotA techniques versus the number of BS 
antennas and for different values of number of UEs. 

 

Perspective and relation to other WP4 contributions 

This contribution provides an upper bound on the achievable performance in terms of system 
sum rate. Indeed, it considers the limit case of perfect CSIT and ideal RIS hardware. It can be 
used as performance benchmark by other contributions, which tackle practical scenarios and 
incorporate real-life constraints. 

 

3.5.2 Contribution #A-1: RIS-Empowered UAV Communications for Robust and 
Reliable Air-to-Ground Networks 

Motivation and context 

We propose a novel optimization framework to provide robust and reliable air-to-ground 
networks by compensating for undesired flight effects such as variations of the position and 
orientation of the flying device due to adverse meteorological phenomena [MDS21]. Indeed, 
such unwanted perturbations result in instantaneously-wrong RIS configurations, which 
negatively impact the communication performance if not taken into account. 

As depicted in Figure 3-3, we consider a network comprised of an 𝑀-antenna transmitter located 
at the origin of the 3D reference system, a planar 𝑁௫ × 𝑁௬- antenna RIS, where 𝑁௫ and 𝑁௬ are 
the number of elements along the 𝑥 and 𝑦 axis, respectively, mounted on-board a UAV, which 
is located in position 𝒒 = [𝑞௫ 𝑞௬ 𝑞௭]்  and a target area 𝐴 wherein first responders and/or 
victims are present. Each intended receiver is located in position 𝒘 = [𝑤௫ 𝑤௬ 𝑤௭]் and shall 
be reached with a sufficient SNR for successful decoding of the incoming signal. We further let 
𝜃ோ (𝜃்) denote the receive (transmit) elevation angle of arrival (departure) at the RIS and  𝜙ோ 
(𝜙்) the receiver (transmit) azimuth angle of arrival (departure). 
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Figure 3-3: Considered A2G network system model. 

 

The undesired roll, yaw and pitch of the surface of the RIS are modelled as mutually 
independent normally distributed random variables 𝒓 = [𝜓௫ 𝜓௬ 𝜓௭]் , with zero mean and 
given standard deviation 𝜎௫ , 𝜎௬ , and 𝜎௭ , respectively. Only the statistical properties of such 
unwanted perturbations are assumed to be known. 

The target users are assumed to be distributed within the target area 𝐴 with a given probability 
density function 𝑓ௐ(𝒘), which is assumed to be known. 

Methodology 

We study the problem of maximizing the worst SNR within the specified target area to be 
covered 𝐴, by suitably optimizing both the BS and RIS configurations for a given user statistical 
distribution and UAV perturbation statistics. Such optimization problem is formalized as follows 

max𝚽,𝒗  min𝒘~௙ೈ(𝒘)  𝔼[SNR(𝒒, 𝒘, 𝒓, 𝚽, 𝒗)] 
                𝑠. 𝑡.                ‖𝒗‖ଶ ≤ 𝑃; 
                                       [𝚽]௜,௜ ≤ 1, [𝚽]௜,௝ = 0  

where the matrix 𝚽 contains the RIS beamforming configuration, the vector 𝒗 contains the BS 
configuration, 𝑃 is the power budget at the BS and the expectation operator allows us to design 
a statistical method that aims at counteracting on average the random fluctuations in the 
received SNR due to the unwanted UAV perturbations. 

The above mentioned problem is non-convex and highly complex to tackle due to the generic 
form of the user pdf within the target area. Our proposed solution, namely RiFe, consists in 
firstly applying Monte Carlo sampling to draw 𝑁௪ points from the given user distribution. If 𝑁௪ is 
large enough, we obtain a correct sampling of the distribution, at the cost of increased 
complexity. We then fix the BS configuration as MRT to the (nominal) UAV-RIS position and we 
optimize the RIS configuration by applying SDR, which is followed by a rank-1 approximation 
via Gaussian randomization. 
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Results and outcomes 

 In Figure 3-4, we evaluate the CDF of the minimum SNR in the specified target area obtained 
with the proposed RiFe approach and an agnostic approach that does not take into account the 
statistics on the UAV perturbations versus the system SNR and for different values of the UAV 
perturbation statistics 𝜎 (note that for simplicity we assume 𝜎௫ = 𝜎௬ = 𝜎௭ = 𝜎) and radius of the 
considered circular target area (2.5 m on the left-hand side and 10 m on the right-hand side). 

Remarkably, our proposed approach manages to substantially increase the average minimum 
SNR in all the considered cases, especially under strong perturbations, thus guaranteeing an 
acceptable level of signal quality even under adverse atmospheric conditions. 

 

 

                     

Figure 3-4: CDF of the proposed RiFe and the agnostic approach versus the SNR and for 
different values of UAV perturbations and victim spread (𝟐. 𝟓 𝐦 on the left-hand side and 𝟏𝟎 𝐦 

on the right-hand side). 

 

Perspective and relation to other WP4 contributions 

This contribution proposed a RIS optimization technique that is suited for multi-UE scenarios 
where the only known CSI is the user distribution in space. It may be enhanced by incorporating 
more advanced joint BS and RIS beamforming optimization techniques, or by endowing the RIS 
on-board the UAV with self-configuring capabilities. 

 

3.5.3 Contribution #A-2: A Frequency-Agnostic RIS-based solution to control the 
Smart Radio Propagation Environment 

Motivation and context 

 



 

Document: H2020-ICT-52/RISE-6G/D4.2  

Date: 30/06/2022 Security: Public 

Status: Final Version: 1.2 

 

RISE-6G Public 26 
 

In [MAM22] we propose a novel multi-frequency RIS design to dynamically operate between 
different radio frequencies without having to change the RIS hardware, which is based on 
reconfigurable patch antennas and PIN diodes. In particular, as depicted in Figure 3-5, our 
proposed unit cell is made of a two-layer patch antenna, where the inner layer is designed to 
work at 27.96 GHz (with the outer layer disabled), while the union of both layers resonates at 
21.28 GHz. Such layers are connected via a PIN diode, which selectively activates the outer 
layer and is modelled in CST Studio Suite® via two PEC pads. The performance of such novel 
unit cell RIS design in terms of scattering parameters is shown in Figure 3-6. 

 

Figure 3-5: CST model of the proposed muti-frequency RIS unit cell. 

 
 

 

Figure 3-6: Full-wave simulation in CST of a single multi-frequency RIS unit cell in terms of 
scattering parameters. 

 
Since the RIS hardware is fixed, when operating at the two different radio frequencies the 
inter-element distance is in general different than the conventional half-wavelength. In 
particular, we fix the inter-element distance 𝑑 = 0.56𝜆ଵ, where 𝜆ଵ is the smallest working 
wavelength. As a consequence, when the RIS is used at the larger 𝜆ଶ, the array response 
experiences non-idealities such as mutual coupling, which reduce the main lobe magnitude, 
and increase both side-lobe level and angular width. 
 
To counteract such issues, we propose a novel optimization framework, namely FABRIS, 
which aims at finding both the (passive) beamforming configuration and activation profile at 
the RIS to maximize the SLNR at the intended user. Indeed, our novel RIS unit cell design 
possesses the ability to turn-off antenna elements by using a matched load and thus restoring 
a higher inter-element spacing, which in turn reduces the mutual coupling across the array. 
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We consider the wireless network depicted in Figure 3-7, wherein a number of non-intended 
users are placed in a circular area of radius 𝑟 around the target user. 

 

Figure 3-7: Considered system model for multi-frequency RIS design 

 

Methodology 

 

The considered optimization problem is formalized as follows 
 

max
𝚽,𝜶

    SLNR(𝚽, 𝜶, 𝜆)   

 𝑠. 𝑡.      𝛼௜ ∈ {0,1}; 
             [𝚽]௜,௜ ≤ 1, [𝚽]௜,௝ = 0  

where 𝚽 represents the RIS phase shifts and 𝜶 is the (binary) vector of unit cell activations for 
the specific working wavelength 𝜆. 

Such non-convex problem is solved by decoupling the optimization of the phase shifts and 
activation profile. The former is defined as MRT, while the latter is found by SDR and 
subsequent rank-1 approximation via Gaussian randomization. 

 

Results and outcomes 

In Figure 3-8 we show the CDF of the SNLR in the target area obtained with the proposed 
FABRIS approach and with a naïve approach with no concern for mutual coupling. The results 
are shown for 𝑁 = 100 RIS elements and for different values of the target area radius on the 
left-hand side, and for 𝑟 = 10 m and different values of 𝑁 on the right-hand side.  We notice that 
FABRIS effectively reduces leakage to neighboring users by suitably optimizing the RIS 
activation profile as to mitigate the effects of mutual coupling, without excessively compromising 
beamforming gain, thus obtaining a sweet spot in the trade-off between the two. This effect is 



 

Document: H2020-ICT-52/RISE-6G/D4.2  

Date: 30/06/2022 Security: Public 

Status: Final Version: 1.2 

 

RISE-6G Public 28 
 

more evident for smaller values of 𝑟, since the non-intended users may be very close to the 
target user and thus experience strong leakage. 

 

 

Figure 3-8: CDF of the SLNR obtained with FABRIS and with a conventional Naive approach for 
different values of target area radius (left-hand side) and RIS elements (right-hand side). 

 

Perspective and relation to other WP4 contributions 

This contribution is a first attempt at designing a multi-frequency RIS, which may be used by a 
single operator to serve users scheduled at different frequency bands, or by multiple operators. 
In both cases FABRIS allows to effectively share the same hardware without having to change 
it or opt for redundant deployments. 

It may be incorporated into other WP4 contributions as to define the appropriate network 
architecture and design the associated control channel to support for such kind of solution. 

 

3.5.4 Contribution #A-3: A Self-Configuring RIS Solution Towards 6G 

Motivation and context 

We propose the novel concept of self-configuring RIS, which can autonomously reconfigure 
without relying on a dedicated control channel between the RIS controller and the network, to 
enhance the communication performance in a multi user scenario . Due to the lack of control 
channel, the configuration of the RIS is based only on local CSI obtained through a channel 
estimation model lato-sensu at the RIS, which provides enough information on the BS-RIS and 
the RIS-UEs channels to enable the self-configuration of the RIS. In particular, the RIS self-
configures to provide additional, potentially high-gain, reflected paths between the BS and the 
UEs, thus improving the overall end-to-end channel conditions. The additional high gain 
reflected paths offered by the RIS can be sensed by the communicating devices, i.e., BS and 
UEs, via standard channel sounding techniques, and can be exploited for enhancing 
communication performances. 

In order to get sensing capabilities at the RIS, we consider a RIS hardware architecture 
comprising an array of hybrid meta-atoms able to simultaneously reflect and absorb (i.e., sense) 
incident signals. Each element of the RIS is coupled with a sampling waveguide that propagates 
the absorbed portion of the signal downstream an RF circuit comprised by a set of RF combiners 
that sum the signals sensed by each metasurface element and feed a power detector. 

Methodology 

We address the RIS self-configuration problem aiming at finding the RIS configuration that 
provides the better channel enhancement while targeting the achievable sum-rate maximization 
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problem. With the availability of a control channel, the sum-rate maximization problem can be 
conveniently solved via alternate optimization of the BS precoder and RIS configuration 
[MDS21], however it cannot be solved locally at the RIS due to the lack of CSI of the direct link 
between the BS and each UE. Therefore, we develop a feasible and effective solution that 
consists in the optimization of the RIS configuration aiming at the enhancement of the end-to-
end RIS-assisted channel gain of each user. Upon completion of this optimization, the BS can 
optimize the precoding matrix according to the equivalent RIS-assisted link. 

To build our solution, we firstly find the RIS configuration that maximizes the gain of the reflected 
paths between BS and UEs. Secondly, we derive a closed form expression that links the 
aforementioned reflection configuration with the RIS array response vectors maximizing the 
absorbed power from the BS and the UEs. Finally, we demonstrate that the maximization of the 
sensed power depends only on the RIS array response vectors pointing towards the AoA in the 
BS and UE directions, Thus, it is independent of the BS precoding vector and can be fully 
performed locally at the RIS. 

 

Figure 3-9 Example of power profile and corresponding estimated AoA for different codebook 
sizes L in a multi UE scenario 

We propose a codebook-based approach for estimating the necessary AoA and then computing 
the RIS configuration locally at the RIS, namely MARISA. Our approach foresees two possible 
operation modes: probing and communication. In the probing mode, the RIS iteratively sweeps 
across all the codewords (i.e., beam formers) in the codebook to scan the 3D space in different 
directions and detect (i.e., sense) network devices. The set of power measurements collected 
builds a power profile allowing the RIS to estimate locally the AoAs of the transmitting devices, 
as depicted in Figure 3-9. Upon completion of the probing phase, the RIS enters into the 
communication phase, which is aimed to assist the reliable transmission of data between the 
BS and the active UEs. In this phase, the end-to-end RIS optimal configuration is computed 
from the obtained AoAs and then projected onto the feasible set of discrete phase shifts 
according to the RIS hardware capabilities. 

 

Results and outcomes 

To assess the performance of the self-configuring RIS, and verify its feasibility, we consider a 
squared service area wherein a single BS and a single RIS are located in the midpoint of 
adjacent edges. We consider uniform UEs distribution and compare the performances of our 
self-configuration scheme against the centralised approach proposed in [MDS21], which jointly 
optimises the RIS configuration and BS precoder with perfect CSI availability. 
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Figure 3-10 Average sum-rate in a multi-UE scenario obtained with RIS self-configuration 
strategy against centralised joint RIS and BS pre-coder optimisation. 

 

 

Figure 3-11 Cumulative distribution function of the fraction of the received power at each UE 
over the direct path with respect to the total received power after precoder optimisation at the 

BS. 

Figure 3-10 provides the performance in terms of the sum-rate obtained with the proposed self-
configuration scheme against the centralised approach with different number of users dropped 
in the service area and with different service area size, while Figure 3-11 depicts the fraction of 
power transmitted over the additional reflected path. The results demonstrate that the proposed 
approach provides near-optimal sum rate performances when compared to fully CSI-aware 
benchmark schemes that rely on a dedicated control channel. 
 

Perspective and relation to other WP4 contributions 

The contribution shows the feasibility of RIS self-configuration strategies without involving a 
centralized controller and provides an effective RIS optimization strategy based on local CSI at 
the RIS.  The contribution is providing an agile deployment strategy which is in line with the 
work package objective. 

3.5.5 Contribution #A-4: Statistical mechanics methods for RIS optimization: Ising 
Hamiltonian and Quantum Annealing 

Motivation and context 

We consider the RIS in Figure 3-12: RIS geometry and micropixel structure. Erreur ! Source 
du renvoi introuvable.and use a discrete model to describe the EM scattered field both in free-
space and in presence of obstacles. We focus on DL scenario and assume that the base station 
is in LoS with the RIS, but some blockage occurs with the UEs. We further assume that all the 
UEs are static and in LoS with the RIS. Both base station and UEs are in the far-field of the RIS. 
We present an physics-based model of the RIS and related combinatorial optimization algorithm 
on quantum annealers to tackle the multi-user optimization of large RISs [GDR21]. In beyond 
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5G networks, the UEs can also be dynamic and therefore experience fading, as in case of 
devices such as cars, phones, tables or wearables. The statistical mechanics model adopted in 
this context is prone to include fading as random wave interaction between unit cells of the RIS.  

 

 

Methodology 

This contribution describes an isomorphism between the optimization of the RCS of an RIS and 
the ground state search through an Ising Hamiltonian model. An RIS with multi-level reflection 
phase Φ(𝑚, 𝑛) codebook is considered for each cell (𝑚, 𝑛). An example with RIS binary unit 
cells mapped onto a two-dimensional spin array lattice 𝑠(𝑚, 𝑛) is shown in Figure 3-13, spin up 
and spin down correspond to Dirichlet (𝜓(𝑚, 𝑛) = 0) and Neumann (𝜓(𝑚, 𝑛) = 𝜋) boundary 
conditions respectively, according to the rule 

𝑠(𝑚, 𝑛) = 𝑒௝஍(௠,௡) = ቄ
+1
−1

 

Both beam-forming and null-forming can be achieved via ground state search of the Ising 
Hamiltonian of the spin array mapping the RIS. The search has been carried out efficiently via 
quantum annealing, which proves superior to classical quantum annealers for large RIS 
dimensions [LRG22]. The technical procedure implementing the Ising Hamiltonian onto a 
quantum annealer follows three steps [RGL22]:  

1. Biasing step: Virtual magnetic field applied to prepare particle spins. 

2. Multi-level optimization: Sub-array division of the spin array, optimization of the 
individual subarrays and optimization of the array of sub-arrays. 

3. Multi-phase extension: Definition of complex spins and formation of reflection phase 
codebook by linear combination of complex-valued spins.  

 

 

 

Figure 3-12: RIS geometry and micropixel structure. 

Figure 3-13: Spin array lattice mimicking a binary RIS. 
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As an example of multi-phase codebook, the macropixel cell dimension 𝑝 is reported in Table 
1-1 for a quadriphase RIS.  

 

 

Table 3-2: Phase codebook and associated micro-cell parameters 

 

Results and outcomes 

The structure considered in this contribution is the one depicted in Figure 3-12. The whole RIS 
is formed of 8 x 8 quadriphase macrocells. The operating frequency of the impinging plane wave 
is set to 8.57 GHz. 

 

1) One-dimensional RIS performance and N2 law verification. The RCS results are reported 
in Figure 3-14 for an increasing number of RIS unit cells N.  

 

 

2) Joint beam- and null-forming optimization of the RIS. Both the RCs and related RIS 
mask is reported in Figure 3-15.  

 

(a) 

Figure 3-14: One-dimensional RIS performance 
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(b) 

 

 

3) Comparison between optimization achieved with a physical optics model and full wave 
simulations for a quadri-phase RIS structure. The RCS of the optimized RIS is reported 
in Figure 3-16.  

 

 

 (a)                                                                  (b) 

 

 

Perspective and relation to other WP4 contributions 

The contribution provides a physics-based model of the RIS that includes practical constraints. 
The superior performance achieved by the quantum computation scheme provides a useful tool 
to tackle the design of large and dense (or multiple) RISs operating in multi-user environments. 
The approach can be extended to include the presence of object clusters and walls, for which 
the mathematical structure of the Ising Hamiltonian becomes more involved due to higher order 
terms, but remains computable via computer architectures of quantum annealers.  

Figure 3-15: Two-dimensional RIS optimization for: (a) Beamforming; (b) Joint beam- and null-
forming within the red square. 

Figure 3-16: optimized two-dimensional RIS from: (a) Physical Optics model; (b) Full-wave 
simulations. 
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3.5.6 Contribution #A-5: Mutual Coupling Aware Sum-Rate Optimization of 
Reconfigurable Intelligent Surfaces Based on a Mutual Impedance Channel 
Model 

Motivation and context 

To evaluate the performance and to optimize RIS-assisted wireless networks, it is necessary to 
use communication models that account for the electromagnetic characteristics and physical 
implementation of the RISs. The authors of [GD21] have introduced an electromagnetic 
consistent model for RIS-aided communications, which resembles a multiple-input multiple-
output (MIMO) channel. Departing from [GD21], the authors of [QD21] have introduced an 
analytical framework and a numerical algorithm that optimize the tunable impedances to 
maximize the received power. This algorithm introduced is applicable to single antenna 
transmitters and receivers. Also, a single RIS and a single receiver are considered. In this work, 
we introduce an algorithm to optimize the sum-rate of an RIS-assisted MIMO interference 
network that comprises many multi-antenna transmitters, receivers, and RISs. The proposed 
approach leverages the weighted minimum mean square error (wMMSE) and the iterative block 
coordinate descent (BCD) algorithms. 

Methodology 

We consider the MIMO interference channel in Figure 3-17 that comprises 𝑁௨  transmitter-
receiver pairs. Each transmitter and receiver are equipped with  𝑀  and 𝐿 ≤  𝑀  antenna 
elements, respectively. Each transmit dipole is driven by a voltage generator that models the 
transmit feed line, and each receive dipole is connected to a load impedance that mimics the 
receive electric circuit. Differently than Section 2.1, we denote the number of UEs and 
transmitters as 𝑁௨, the number of RISs as 𝐾, and the number of RIS elements as 𝑃. 
The transmission between the 𝑁௨  transmitter-receiver pairs is assisted by 𝐾 RISs. Each RIS 
comprises 𝑃 nearly passive thin wire dipoles that are independently configurable (by an external 
controller) through tunable impedances. The indices 𝑗, 𝑘, and 𝑖 denote the 𝑗th transmitter, 𝑘th 
RIS, and 𝑖th receiver, respectively. 

 

Figure 3-17 Illustration of an RIS-assisted MIMO interference channel (𝑵𝒖 = 𝟐, 𝑴 = 𝟒, 𝑳 = 𝟒, 𝑲 =
𝟐, 𝑷 = 𝟑𝟐). 

In this work, we consider the case study in which the 𝑀-antenna transmitters and 𝐿-antenna 
receivers are in the far-field of each other and in the far-field of the RISs. However, the 𝑃 thin 
dipoles that comprise each RIS are arbitrarily close to each other, and the mutual coupling 
among them is taken into account. 

The end-to-end channel matrix from the 𝑗th transmitter to the 𝑖th receiver can be modeled, in 
the far-field region, as 

 

𝐻௜,௝(ℬ) ≈ 𝐻ഥ௜,௝ + ෍ 𝐻෩௜,௞,௝(ℬ)

௄

௞ୀଵ

          ∈ 𝐶௅×ெ           (3.6.1) 
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where 𝐻ഥ௜,௝ accounts for the line-of-sight link and 𝐻෩௜,௞,௝ accounts for the (virtual line-of-sight) link 
re-radiated by the 𝑘th RIS. Differently than Section 2.1, we denote the RIS tunable impedances 
as ℬ. In (3.6.1), we have made explicit the dependence of the re-radiated field with the diagonal 
matrix 𝐵௞ =  𝑑𝑖𝑎𝑔(𝑏௞) of tunable impedances of the 𝐾 RISs. In particular, ℬ = {𝑏ଵ, 𝑏ଶ, … , 𝑏௄} is 
a shorthand for the 𝐾 vectors 𝑏௞ to optimize.   

By taking into account the concurrent transmissions of the 𝑁௨ transmitters, the signal at the 𝑖th 
receiver is 

𝑦௜ = 𝐻௜,௜(ℬ)𝑥௜ + ෍ 𝐻௜,௝(ℬ)𝑥௝

ேೠ

௝ୀଵ,௝ஷ௜

+  𝑛௜          ∈ 𝐶௅×ଵ          (3.6.2) 

where 𝑛௜ ∈ 𝐶௅×ଵ denotes the additive white Gaussian noise with distribution 𝐶𝒩(0, 𝜎௜
ଶ𝐼௅). Based 

on the resulting MIMO interference channel in (3.6.2), the achievable rate of the 𝑖th transmitter-
receiver pair can be formulated as [A21] 

𝑅௜(𝒱, ℬ) = log det (𝐼௅ + 𝑉௜
ு𝐻௜,௜

ு (ℬ) J̅ ௜
ିଵ𝐻௜,௜(ℬ) 𝑉௜)       (3.6.3) 

where J௜̅  is the interference+noise covariance matrix and 𝒱 = {𝑉ଵ, … , 𝑉ேೠ
}  collects the 𝑁௨ 

precoding matrices.   

We aim to optimize the matrices 𝒱 and the vectors ℬ for maximizing the system sum-rate. The 
sum-rate maximization problem reads 

𝑚𝑎𝑥
𝒱,ℬ

 𝑅௧௢௧(𝒱, ℬ) = 𝑚𝑎𝑥
𝒱,ℬ

෍ 𝛼௜𝑅௜(𝒱, ℬ)           (3.6.4)

ேೠ

௜ୀଵ

  

𝑠. 𝑡.    𝑡𝑟൫𝑉௜  𝑉௜
ு൯ ≤ 𝑃௜      𝑖 = 1, … , 𝑁௨ 

ℜ൫𝑏௞,௣൯ = 𝑅଴,      𝑘 = 1, … , 𝐾, 𝑝 = 1, … , 𝑃   

ℑ൫𝑏௞,௣൯ ∈ ℝ,      𝑘 = 1, … , 𝐾, 𝑝 = 1, … , 𝑃 

Where 𝑃௜ is the power budget of the 𝑖th transmitter, 𝛼 = [𝛼ଵ, … , 𝛼ேೠ
] is the set of weights that 

ensure some fairness among the 𝑁௨  transmitter receiver pairs and 𝑅଴ ≥ 0 is the resistance 
modeling the losses of the tunable impedances of the RIS elements.  
The problem in (3.6.4) is not convex in the matrices 𝒱 and in the vectors ℬ. The proposed 
approach to tackle it is given in Algorithm 1. At each iteration of Algorithm 1, we solve first (3.6.4) 
as a function of 𝒱 by assuming ℬ fixed, and then (3.6.4) as a function of ℬ by assuming 𝒱 fixed. 
Algorithm 1 combines, at each iteration, the solutions of the two sub-problems by using the BCD 
method.    
 

     
 

Results and outcomes 

We consider a setup with two transmitter-receiver pairs (𝑁௨ = 2) located in 𝑡ଵ = (5 20 1), 𝑡ଶ =
(5 10 1), 𝑟ଵ = (5 5 1) and 𝑟ଶ = (5 25 1) and two RISs (𝐾 =  2) centered in (0 20 2) and (0 5 2). 
The transmission frequency is 𝑓 =  28 𝐺𝐻𝑧 and the wavelength is 𝜆. The number of antennas 
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at the transmitters and receivers is the same, i.e., 𝐿 =  𝑀, and their inter-distance is 𝜆/2. The 
RIS scattering elements are thin wires with length 𝑙 =  𝜆/32 and infinitesimally small radius 𝑎. 
Also, 𝑅଴  =  0.2 𝑂ℎ𝑚. To assess the impact of subwavelength inter-distances while keeping the 
simulation time reasonably short, we assume that the size of each RIS is fixed to 𝜆 × 𝜆, which 
may represent a super-cell in a large-size RIS. Thus, the number of scattering elements P and 
their inter-distances are chosen appropriately, e.g., 𝑃 =  {4, 16, 64, 256} for 𝑑 =  {1/2, 1/4, 1/
8, 1/16}𝜆 . The noise and transmit powers are  𝜎௜

ଶ =  −120 𝑑𝐵𝑚  and 𝑃௜  =  20 𝑑𝐵𝑚 . The 
transmitters and receivers are assumed to be in non-line-of-sight (the direct links are ignored). 

In Figure 3-18, we observe that, if the mutual coupling is taken into account, increasing the 
number of antennas at the transmitters and receivers enhances the sum-rate, and an RIS with 
closely spaced scattering elements yields superior performance. In Figure 3-18, two case 
studies are analyzed: (i) free space propagation (solid lines) and (ii) multipath propagation 
(dashed lines). The performance trends are similar in both cases. Also, the sum-rate is higher 
in multipath propagation case, since the multi-antenna transmitters, the multi-antenna receivers, 
and the RISs exploit the presence of additional propagation paths. 

 

Figure 3-18 Sum-rate vs. 𝑳 (10000 iterations) 

Perspective and relation to other WP4 contributions 

We have introduced an optimization algorithm for maximizing the sum-rate of RIS-assisted 
MIMO interference channels. The proposed approach accounts for the mutual coupling among 
closely spaced scattering elements. Numerical results have validated the convergence of the 
proposed approach and the need of accounting for the mutual coupling among the scatterers 
of the RIS at the design stage. 

 

3.5.7 Contribution #A-6: Degree-of-Freedom estimation from ray tracing 

Motivation and context 

Ray-tracing methods such as Dynamical Energy Analysis (DEA) performed at UNOT are an 
important tool for simulating the performance of RISs within complex, multi-reflective 
environments. The calculations presented in this section are intended to leverage the output of 
such simulations to provide more granular information on the strengths and numbers of 
available communication channels, which provide input to the metrics such as Spectral 
Efficiency defined in Section 2.5, enabling us to evaluate their dependence on and sensitivity to 
the surrounding geometry and physics (including RISs). 
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Methodology 

The input for the calculations developed here is a density of rays 𝜌(𝑠, 𝑝) in which 𝑠  and 𝑝 
respectively represent the position and direction of a ray as it hits a boundary. Such densities 
are the direct output of the DEA method, for example. These densities can be directly related 
to correlation matrices of receiving and transmitting antennae, from which communication rates 
and channels are determined, using the Wigner correspondence [GCT15]. This correspondence 
therefore allows us to leverage DEA simulations into direct, quantitative estimates of 
communication rates between transmitting and receiving patches supporting large MIMO 
arrays. 

 

Results and outcomes 

An important quantitative characteristic of the interaction of transmitting and receiving patches 
is the quantity N୫ୟ୶ = 𝑘ௗ𝐴/(2𝜋)ௗ , in which 𝐴 is the overlap area in phase space between 
transmitting and receiving regions and 𝑑   is the boundary dimension, which estimates the 
effective maximum number of communication channels for that geometry. Beyond that value, 
even fully optimized channel strengths drop off rapidly (see Figure 3-19). This is a well-studied 
problem in the case where the overlap region is a simple rectangle in phase space and 
quantitative estimates of the transition and fall-off are well known (see, for example, the curves 
labelled Slepian1 and Slepian2 in Figure 3-19) [S65]. 

 

Figure 3-19: DOF estimates from phase-space geometry. On the left are shown the channel 
strengths for a patch in phase space whose area is such that 𝑵𝒎𝒂𝒙 = 𝟓 (only even values of  𝒏 

are plotted), which are well described by the newly-developed graph model (continuous curve). 
On the right we compare the difference between this estimate and the extreme ray limit, where 

channel strengths drop sharply from 𝟏 to 𝟎 at 𝑵𝒎𝒂𝒙. The graph model gives a better quantitative 
description over a wider range of 𝒏 than traditional estimates, which represented by the dashed 

curves (labelled Slepian1 and Slepian2). 

We have developed a new approach to tackle this problem, which leverages on a graph model 
to study and solve a related differential equation. This graph model achieves the following aims. 

 It generalizes the calculation beyond the classically-studied case of a simple rectangular 
patch in phase space to the case pf skewed patches, which are more characteristic of 
the problems encountered in multi-reflective environments with large transmitting and 
receiving areas. 

 It applies universally, for all values of the channel label 𝑛, whereas classical results are 
confined to the transition region 𝑛 ≈ 𝑁௠௔௫ (see curves labelled Slepian1 in Figure 3-19), 
to small values of 𝑛 (see curves labelled Slepian2 in Figure 3-19), or to very large values 
of 𝑛 (see curves labelled Widom in Figure 3-19). 
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These estimates provide a baseline calculation to bound the number degrees of freedom 
available for a given geometry and physical environment of transmitting and receiving antennas 
and RISs, but the channel strengths and numbers that are actually realized depend on further 
fine detail of the ray density 𝜌(𝑠, 𝑝), which is in turn affected by physics such as path loss. 

 

Figure 3-20: Further refinement of DOF estimates can be obtained from the simulated phase-space 
density 𝝆(𝒔, 𝒑) obtained in these illustrations from DEA simulation of a model two-dimensional 
cavity. The circles here show individual channel strengths collated from separate simulations 
performed over a range of frequencies, but with appropriate scaling these are seen to be well 
described by a prediction obtained from 𝝆(𝒔, 𝒑)  ) (dashed curves). Here the ray density is 
significant only inside a proper subset of the geometrically-allowed patch in phase space, so the 
number of effectively available channels is smaller than 𝑵𝒎𝒂𝒙. Furthermore, within the available 
phase-space area, the density has significant variation, so that there is a corresponding variation 
of the available channel strengths. 

 
We have been able to leverage DEA simulation into a more refined estimation of channel 
strengths and numbers using a Weyl formula [D78], which approximates a density of 
eigenvalues 𝜆௡ (channel strengths) in terms of the profile of the phase space density 𝜌(𝑠, 𝑝). So 
far this has been tested against model 2D cavities at relatively low frequencies, where wave 
effects are important, but as shown by the example in Figure 3-20, is nevertheless capable of 
providing detailed quantitative predictions. 

 

Perspective and relation to other WP4 contributions 

The calculations completed so far have provided an important proof-of-principle of the efficacy 
of ray-tracing approaches such as DEA in providing detailed, granular approximation of the 
available communication rates between given transmitting and receiving LISs, but it must be 
acknowledged that significant further development will be necessary. In particular, these 
methods have so far been tested only on lower-dimensional and simplified geometries and must 
in the future be lifted to more realistic (2D or 3D) geometries. In addition, the explicit 
incorporation of RISs is yet to be performed, although this is a challenge mostly for the DEA 
method itself and it does not constitute a significant barrier to the DoF estimates under 
consideration in this part. Once fully developed, such DoF quantification will provide useful input 
into the evaluation of metrics and KPIs set out in Section 2, for example. 

 

3.5.8 Contribution #A-7: Frequency-Mixing RIS for Nonlinear Wireless Propagation 

Motivation and context 

We propose a novel concept of RIS which acts as a frequency mixer with a given frequency, 
named Frequency-Mixing RIS (FMx-RIS), shown in Figure 3-2121. The architecture relies on 
sinusoidal adjustment of the reflection amplitude with a certain frequency, uniquely associated 
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with a given surface, which makes the wireless propagation environment non-linear introducing 
new frequencies. This feature simplifies the channel estimation (CE) in RIS-aided systems since 
the channels from each RIS can be estimated in parallel in the frequency domain, potentially 
leading to a large decrease in the estimation overhead. We examine the concept from a 
communication-theoretic viewpoint and elaborate the unique way to identify the channel from 
different propagation paths. 

 

Figure 3-21 A simple example of an FMx-IRS-aided system is shown in (a), where a single-
antenna transmitter communicates with a single-antenna receiver aided by an FRM operating on 
frequency 𝒇𝒓; (b) shows the corresponding frequency response of the received signal; (c) give 

an example of a wide-band system with carrier at 𝒇𝒄 and bandwidth 𝑩, and (d) shows the 
corresponding frequency response. [YWD21] 

Methodology 

We start with the two-path channel model to describe the details of the operation and introduce 
the basic principles behind FMx-RIS, where the incident signal is multiplexed to other two 
frequency bands that uniquely associates with the operating frequency at RIS. Then we 
consider the infinite-path channel model to develop guidelines for choosing operating frequency 
at the surface to minimize, potentially remove the correlations between the reflective channels 
from RIS. In addition, we investigate the CE in the uplink direction and verify the feasibility of 
the pilot-based CE scheme for both two-path model and multipath model without requiring extra 
pilot overhead. Finally, we derive the upper bound of the achievable rate that can perfectly 
predict the system performance. The interested reader can refer to [YDW21] for all the details 
on the system model, problem formulation, and algorithmic solutions. 

 

Results and outcomes 

Figure 3-2222 compares the channel gain of the classical two-path model and the two-path 
model in which one of the paths goes through an FMx-RIS. In contrast with classical two-path 
model, FMx-RIS decouples the two paths in frequency and avoids this superposition, which 
stabilizes the channel gain of the received signal as a function of distance. Figure 3-2323 
exhibits the normalized MSE (NMSE) of channel estimation under different propagation 
environment. The estimation performance of the direct path outperforms that of the reflected 
path at low-SNR due to the fact that frequency-mixing operation splits the power, and the effect 
of noise on channel estimation at low SNRs is much higher. Figure 3-2324(a) illustrates the 
condition number of effective channel to show the channel diversity gain which indicates the 
optimal FMx-RIS operating frequency (𝑖 ∈ Nା) that maximizes the diversity gain. Figure 3-
2424(b) shows that the upper bound converges to the real achievable rate really tight, and offers 
a considerable gain compared with conventional MIMO due to the extra contribution from the 
reflective paths. 
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Figure 3-22 Pathloss v.s. distance between user and BS under two-path model [YDW21] 

 

Figure 3-23 Channel NMSE v.s. the transmit power for different channel model [YDW21] 

 

Figure 3-24 Impact of correlation among reflected paths under infinite-path model, where (a) shows 
the conditioning number w.r.t 𝒊 being normalized frequency shift; (b) compares the capacity upper 

bounds with real capacity [YDW21] 

 

 

Perspective and relation to other WP4 contributions 

The use of the RIS as frequency mixer may be a revolutionary approach able to reduce the 
complexity of the channel estimation phase at the cost of increasing the occupied bandwidth. 
This can be extremely useful for communication purpose, being the CSI estimation a 
fundamental step for the communication process and at the same time very resource consuming 
when performed by entities employing a large number of antennas. 

 



 

Document: H2020-ICT-52/RISE-6G/D4.2  

Date: 30/06/2022 Security: Public 

Status: Final Version: 1.2 

 

RISE-6G Public 41 
 

4 Design of Multi-User Techniques for RISE Communications 

The design of RIS-aided communication techniques for multi-user environments should take 
into consideration the different aspects of access, channel estimation, communication 
parameters optimization and data transmission already considered for classical wireless 
systems. Differently from 5G standard communications, RIS populated networks need particular 
attention on the impact the phase shift profile can have in the various operations. The 
configuration of the RIS can be used to increase the performances of a single data transmission, 
but can also be used to perform opportunistic variation of the environment improving the 
performance of various operations. 

In this section, we present consideration on the design of the various phases of RIS-aided 
wireless communications. 

4.1 RIS-aided access procedures 

The access procedure regards the admission of one or more users to the network. The 
approach used in the 5G networks make use of DL synchronization signals transmitted by the 
BS. The users listen to the incoming signal trying to decode the information within, and then try 
to connect to the BS using synchronization and access messages. In case of MIMO BS, the DL 
synchronization signals are transmitted multiple times, while the beamforming of the BS sweeps 
to a certain number of beamformer vectors enabling it to cover the area of interest. 

As already presented in Deliverable 4.1, a similar procedure can be employed by the RIS-aided 
network, in which the RIS may sweep through a set of possible configurations [CSL22]. Using 
a DL transmission phase, we let the UEs learn which configuration provides a sustainable SNR. 
Exploiting this information, each UEs can send pilot signals during the access (UL) phase in the 
attempt to access the network. Here, we stress the necessity of a careful design of 1) the set of 
configurations available at the RIS and 2) the estimation techniques at the UE.  

On the configuration design, we need to specify a codebook of fixed configuration that can be 
selected in sequence by the RIS controller when the access procedure is triggered. Generally, 
the codebook should contain enough configurations to cover at least the whole area of interest. 
In this way, each user in the scenario can receive the synchronization signal and try to access 
the network. 

From the UE perspective, a sequence of signals are received during the DL transmission phase. 
The UE can then apply signal processing techniques to recover the function that characterizes 
the channel gain over configurations. Depending on the estimation technique, the number of 
the configuration of the access codebook might be increased to provide good estimation 
performance, needed for selecting the slot of the access phase providing the best gain.  

We remark that sweeping through configuration generates spatial diversity and may reduce the 
number of collisions. However, a large number of configurations increase the time for the 
configuration estimation phase, reducing the available throughput. Hence, the design of 
codebook and estimation techniques must take into account this trade-off. 

4.2 CSI estimation in multi-user RIS networks 

The estimation of channel state information (CSI) may be the bottleneck in the design of 
communication techniques for RIS-aided systems. The presence of the RIS constrains the 
system to estimate multiple channels simultaneously, whose dimension increases with the 
number of elements of the RIS itself. This is particularly challenging considering that a high 
number of elements is desirable for increasing the gain provided by the RIS. We remark that 



 

Document: H2020-ICT-52/RISE-6G/D4.2  

Date: 30/06/2022 Security: Public 

Status: Final Version: 1.2 

 

RISE-6G Public 42 
 

this is even more important for nearly-passive and quasi-active RISs that are not equipped with 
active transmitting RF chains and are unable to boost the received signal (see Table 1 of 
Deliverable 4.1 for the formal definition of this kind of hardware). Therefore, the need for fast 
and accurate CSI estimation techniques is of fundamental importance. 

Studying the statistics of the considered channel, we can assume that the BS-RIS channel will 
change slowly with respect to the RIS-UE channel. Exploiting this feature, a solution based on 
parallel decomposition and bilinear estimation of the channel has proven to reach good 
performance with very fast convergence, being able to track time varying channels [YAK22]. 
However, this method is only suitable when the direct link between BS and UE is blocked and 
should be modified to also include the direct path.  

4.3 Optimization of the RIS configuration 

While the general problem of optimizing the beamforming for both BS and RIS has been 
described in Section 3.1, here we focus on the consideration for providing optimal configurations 
under more realistic scenarios. 

As already mentioned, the CSI estimation is a complex task for the RIS-aided networks.  For 
this reason, it is favourable to design the configuration profiles exploiting other means. A 
possibility is to capitalize on the strong LoS component of BS-RIS-UE, focusing the beam 
impinging the RIS towards a particular direction. Moreover, the phase shift profile can be further 
optimized to scatter signals in different directions at once, enabling multicasting operation at the 
physical layer. 

Also, the optimization design can be made using the information related to the position, reducing 
the need of CSI estimation. This can be done by means of classical optimization methods or by 
means of machine learning techniques. An example of the two methods is given in Section 4.4.2 
and in Section 4.4.5. 

Finally, we remark the importance of learning approaches to optimize the configuration for 
specific context and objectives. Among them, the reinforcement learning approach is able to 
react dynamically to the change in the environment, which otherwise leads to reduced 
performance. Indeed, efficient reinforcement learning algorithms can be designed to jointly 
exploit the limited CSI data available, the reception of feedback signals on the quality of the 
communication, and even the hardware non-ideality of the RIS elements. A more detailed 
description of the capability of such approaches is given in Section 4.4.4. 

4.4 Contributions from RISE-6G 

The following table lists the relevant contributions from RISE-6G in the design of multi-user 
techniques for RISE systems 

 

Table 4-1 Contribution of RISE-6G on design of multi-user techniques 

Parameter Scope Based on #BS #RIS LoS/ 
NLoS 

Continuous/ 
quantized 
phase-shift 

 



 

Document: H2020-ICT-52/RISE-6G/D4.2  

Date: 30/06/2022 Security: Public 

Status: Final Version: 1.2 

 

RISE-6G Public 43 
 

B-0: Tensor-based 
Channel Tracking for 
RIS-Empowered Multi-
User MIMO Wireless 
Systems 

Fast CSI 
estimation 

Transmission of 
pilot, parallel 
factor 
decomposition 
and bilinear 
estimation 

1 1 LoS/ 
NLos 

Continuous 

B-1: Sum-Rate 
Optimization of 
Reconfigurable 
Intelligent Surfaces 
Based on Statistical 
Position Information 

Maximize the 
throughput 

Statistical 
positioning 
information 

1 1 LoS/ 

NLos 

Continuous 

B-2: Beam-sweeping 
random access protocol 
for RIS-aided systems 

Access of 
new and 
intermittently 
active users 

Sweeping 
trough RIS 
configurations 

1 1 LoS Continuous 

B-3: RIS Orchestration 
algorithms for online 
configuration tuning 
based on Reinforcement 
Learning 

Online 
configuration 
optimization  

Reinforcement 
Learning and 
Multi-Armed 
Bandit 
approaches 

1 Multi
ple 

LoS/ 

NLoS 

Quantized 

B-4: Supervised learning 
of optimal phase 
configuration based on 
user positions 

Phase shift 
of multiple 
RIS at once 

Deep Neural 
Network 
learning 
approach 

1 Multi
ple 

LoS/N
LoS 

Quantized 

B-5: Reconfiguration of 
the physical layer for 
multi beamforming 

Multi 
beamforming 
toward 
different 
receivers 

LoS 
beamforming 

1 1 LoS Continuous 

 

4.4.1 Contribution #B-0: Tensor-based Channel Tracking for RIS-Empowered Multi-
User MIMO Wireless Systems 

Motivation and context 

Channel estimation is of crucial importance for the successful operation of RIS-aided MIMO 
communication systems. The predominantly passive nature makes the estimation of the 
channels a quite challenging problem. The problem is even more challenging if the channel is 
modelled in a time-varying manner to consider a realistic behaviour. The RIS-BS channel 
changes much more slowly than RIS-UE channel due the fixed locations of RIS and BS. Both 
RIS-BS link and RIS-UE channels are modelled as the sum of the possible geometric paths. 
The RIS phase profile is designed operating as cycles of DFT matrix columns. 
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Figure 4-1 System model [YAK22] 

Methodology 

We aim to estimate the separate channels efficiently and accurately for a scenario 
comprehending a MIMO BS, a single RIS of K elements and M users, as depicted in Figure 4-1. 
We first design the transmission protocol where UEs send the pilot sequences multiple times in 
order to collect sufficient observations for separating cascaded channels. Then, relying on an 
adaptive Parallel Factor (PARAFAC) decomposition scheme for the received signal at the BS, 
the initial estimates of RIS-BS and RIS-UE channels are estimated employing the Bilinear 
alternative least square (BALS). To reduce the complexity, we adopt recursive LS (RLS) to track 
the variation of the channel leveraging the relatively stationary of RIS-BS channel. This two-
step procedure will henceforth be referred to as BALS-RLS. Finally, the sparse nature of the 
incurred channels is exploited with the aid of a Generalized approximate message passing 
(GAMP) algorithm.  

The interested reader can refer to [YAK22] for all the details on the system model, problem 
formulation, and algorithmic solutions. 

Results and outcomes 

Figure 4-2 shows the NMSE performance of the RLS and BALS-RLS as a function of the time 
slot, considering various RIS sizes 𝐾. The RIS-BS channel changed every 100 slots. It can be 
observed that the proposed BALS-RLS algorithm converges within few time slots in all plotted 
use cases. Figure 4-3 compares the computational costs of the three considered CE algorithms 
as functions of the parameter 𝐾, and demonstrates the extreme low complexity of BALS-RIS. 
Figure 4-4 illustrates the channel recovery performance of the proposed GAMP-based 
algorithm. We observed that a relatively stable CE accuracy is obtained by GAMP with only half 
of the pilot overhead required for conventional method. 
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Figure 4-2 NMSE of CE with the RLS and BALS-RLS algorithms versus the discrete time evolution 
[YAK22] 

 

Figure 4-3 Execution time of the BALS-, RLS-, and BALS-RLS-based CE algorithms verse RIS size 
[YAK22] 
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Figure 4-4 NMSE of CE considering GAMP and orthogonal pilots for different pilot sequence lengths 
[YAK22] 

Perspective and relation to other WP4 contributions 

Channel estimation is a fundamental task for RIS-aided communication. The proposed channel 
estimation procedure is able to deal with time-varying channel, providing a procedure to 
efficiently track the variation of the channel over time with little overhead in terms of slot used 
for the estimation. 

4.4.2 Contribution #B-1: Sum-Rate Optimization of Reconfigurable Intelligent Surfaces 
Based on Statistical Position Information 

Motivation and context  

Most research works [YYH20], [H19] and [WZ19] focused on optimizing the performance of RIS-
assisted systems are based on the perfect knowledge of the CSI for all the available channels, 
as well as on the availability of appropriate feedback mechanisms to configure the operation of 
the RISs based on the acquired CSI. In spite of the relatively large number of research 
contributions available to date, the channel estimation in RIS-aided systems is still an open 
issue that is characterized by three major challenges: (i) the long training time, especially in 
multi-user MIMO (MU-MIMO) systems, which may not be tolerable in dynamic scenarios; (ii) the 
real-time reconfiguration of the reflection functionality of the RIS through a dedicated control 
channel with the base station (BS); and (iii) the need of ad hoc channel estimation and signaling 
protocols that make the deployment of RISs non-transparent to existing communication 
protocols. To tackle these open research issues, some authors have recently started 
researching on RIS-aided systems that do not necessarily rely upon the perfect knowledge of 
the CSI, e.g., [NKC20], [Z20] and [YXN21].  

In this contribution, we consider a multi-RIS MU-MIMO system, and we optimize the 
reconfigurable elements of the RISs and the beamforming vectors at the BS and UEs to 
maximize the system sum-rate. The main novelty of the proposed approach lies in not requiring 
either instantaneous CSI or second-order channel statistics for optimizing the RISs, thus 
relaxing the need for their (real time) configuration. In fact, the proposed approach relies only 
on the a priori statistical knowledge of UEs locations. To this end, a two-phase optimization 
process is introduced, which encompasses an offline phase (long-term and sporadic) and an 
online (short-term and more frequent) phase. During the offline phase, the RISs are optimized. 
During the online phase, the communication between the BS and the UEs is optimized without 
interacting with the RISs. 
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Methodology 

We consider the downlink of a wireless system in Figure 4-5 in which one BS equipped with 𝑀 
antennas serves 𝑁௨  UEs that have 𝐿  antennas each. In this network scenario, 𝐾  RISs are 
deployed in some predefined locations for assisting the communication between the BS and the 
UEs. Each RIS comprises 𝑃 nearly passive reconfigurable scattering elements.  

 

Figure 4-5 Layout of the considered indoor scenario (aerial view) for 𝑵𝒖 = 𝟒 and 𝑲 = 𝟏, 𝟐, 𝟒 

The signal received at the 𝑖th UE in the presence of 𝑁௨ concurrent transmitted streams and 
𝐾 RISs is 

𝑦௜ = 𝐻௜(𝚽)𝑥௜ + 𝐻௜(𝚽) ෍ 𝑥௝

ேೠ

௝ୀଵ
+ 𝑛௜           ∈ 𝐶௅×ଵ       (4.4.1) 

where 𝐻௜(𝚽) is the total channel between the BS and the 𝑖th UE, 𝚽 = {𝜑ଵ, … , 𝜑௄} is the set of 
vectors containing the reflection coefficients of the 𝐾 RISs (analog beamforming vectors), 𝑛௜ ∈
𝐶௅×ଵ  is the additive white Gaussian noise with distribution 𝐶𝒩(0, 𝜎௜

ଶ𝐼௅) and 𝑥௜ ∈ 𝐶ெ×ଵ is the 
transmitted vector.  
 
Based on the MIMO interference channel in (4.4.1), the achievable rate (AR) of the 𝑖th UE is 
[SRL11] 
 

𝑅௜(𝒱, 𝚽) = log det (𝐼௅ + 𝑉௜
ு𝐻௜

ு(𝚽) J ̅௜
ିଵ𝐻௜(𝚽) 𝑉௜)       (4.4.2) 

where J௜̅  is the interference-plus-noise covariance matrix and 𝒱 = {𝑉ଵ, … , 𝑉ேೠ
}  is the set of 

precoding matrices of all 𝑁௨ UEs. 

The proposed approach consists of optimizing the digital beamforming vectors of the BS and 
the UEs during the online phase, as well as the analog beamforming vectors of the RISs during 
the offline phase. 

In the online phase, the sum-rate maximization problem can be formulated as 

𝑚𝑎𝑥
𝒱

෍ 𝛼௜𝑅௜(𝒱)           (4.4.3)

ேೠ

௜ୀଵ

  

𝑠. 𝑡.    𝑡𝑟൫𝑉௜  𝑉௜
ு൯ ≤ 𝑃௜      𝑖 = 1, … , 𝑁௨ 

where 𝑃௜ is the BS power budget of the 𝑖th UE, 𝛼 = [𝛼ଵ, … , 𝛼ேೠ
] is the set of weights that are 

chosen to guarantee a given degree of fairness among the UEs. 
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In the Offline Phase, the optimization problem for computing 𝚽 can be formulated as 

𝑚𝑎𝑥
𝚽

න 𝑚𝑎𝑥
𝒱(ఠ)

෍ 𝛼௜𝑅௜(𝒱(𝜔), 𝚽) 𝑓ఆ (𝜔) 𝑑𝜔          (4.4.4)

ேೠ

௜ୀଵ

  

𝑠. 𝑡.    𝑡𝑟൫𝑉௜(𝜔) 𝑉௜
ு(𝜔)൯ ≤ 𝑃௜      ∀𝜔, 𝑖 = 1, … , 𝑁௨ 

𝑡𝑟൫𝜑௞  𝜑௞
ு൯ ≤ 𝑃       𝑘 = 1, … , 𝐾  

where 𝑓
𝛺

 (𝜔)  is the joint probability density function of 𝛺 , 𝛺 =  {ℛ, 𝒯 }  is the set whose 
realizations are given by the random variables 𝜔,  𝒯 is the set of random variables given by the 
multipath components 𝜏𝑚,𝑛 and ℛ is the set of random variables given by the locations of all 
UE’s antennas.  
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A two-phase optimization process was introduced, which encompasses an offline phase (long-
term and sporadic) and an online (short-term and more frequent) phase. During the offline 
phase, the RISs are optimized. During the online phase, the communication between the BS 
and the UEs is optimized without interacting with the RISs. The main advantage of the proposed 
approach is that the information needed for RISs optimization can be either known a priori (e.g., 
one may know that some UEs are confined within a certain area) or can be learned occasionally 
during the operation of the system by leveraging, for instance, a localization infrastructure. 

As for the online phase, we introduce a generalized version of the WMMSE algorithm for 
application to MU-MIMO systems, shown in Algorithm 2. As for the offline phase, owing to the 
more involved expression of the per-user rate of MIMO systems with respect to MISO systems, 
we further generalize the WMMSE method for optimizing the analog beamforming vectors of 
the RISs, as shown in Algorithm 1. 

Results and outcomes 

We consider an indoor environment with dimensions 30 𝑚 ×  30 𝑚 along the 𝑥-axis and 𝑦-axis, 
respectively. The UEs are equipped with 𝐿 =  4 antennas and are deployed randomly on the 
left-half of the room, i.e., in an area of 15 𝑚 ×  30 𝑚, at a height of 1 𝑚. The BS is equipped 
with 𝑀 =  16 antennas and is placed on the opposite side of the room at the position (15, 30) 𝑚 
and at a height of 2 𝑚. The 16 antennas of the BS are arranged on the 𝑦 − 𝑧 plane with 8 
antennas along the 𝑦-axis and 2 antennas along the 𝑧-axis, while the 4 antennas of the UEs are 
assumed to be randomly oriented. The antenna-element gains at the BS and at the UE are 
equal to 3 𝑑𝐵. The noise and maximum power budget are 𝜎௜

ଶ =  −97 𝑑𝐵𝑚 and 𝑃௜  =  0 𝑑𝐵𝑚. 
The RISs are placed on the walls that surround the UEs. Each comprising 𝑃 =  50 scattering 
elements with inter-distance 𝜆/2 where carrier frequency = 28 𝐺𝐻𝑧. 

To evaluate the performance of the proposed offline optimization approach for RISs that relies 
only upon the probability distribution of the UEs’ locations and upon a mismatched probability 
distribution of the multipath channels, we compare the proposed approach against two 
benchmark schemes typically considered in the literature: (i) an ideal CSI scheme denoted by 
I-CSI, in which the RISs are optimized based on the perfect knowledge of the channel matrices, 
and (ii) a scheme based on statistical CSI, denoted by S-CSI, in which the RISs are optimized 
based on second-order statistics, e.g., based on the knowledge of the channel covariance 
matrices as in [Z20]. The numerical results in Figure 4-6, highlight that the NoCSI setup offers 
similar performance as the I-CSI and S-CSI setups. The largest performance degradation is 
obtained, as expected, when each UEs has a single antenna, since it is more difficult to reduce 
the impact of the interference. 

 

Figure 4-6 Comparison between the I-CSI, S-CSI and NoCSI for three different antenna 
configurations and for the SM channel model. 
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Perspective and relation to other WP4 contributions 

The main advantage of the proposed approach lies in requiring only the statistical information 
of the users’ position information, thus significantly reducing the overhead associated with the 
optimization of RIS-assisted wireless systems. The obtained numerical results confirm the 
validity of the proposed approach. Notably, RIS-assisted wireless systems that are optimized 
based solely on offline information still provide large performance gains as compared to wireless 
systems in the absence of RISs. 

4.4.3 Contribution #B-2: Beam-sweeping random access protocol for RIS-aided 
systems 

Motivation and context 

To extend the coverage of a access point, a network operator can deploy a RIS and offer 
network access to the UEs affected by blockages.  
For this setting,  we have proposed a random access protocol in [CSL22]. The aim of this section 
is to illustrate a random-access protocol based on the spatial dimension given by the RIS. 
 

 

Figure 4-7 Protocol phases for random access of UEs [CSL22] 

Methodology 

To take into account the different channel conditions experienced by the UEs, the protocol is 
divided into a DL training phase and an UL access phase, as illustrated in Figure 4-7. In each 
slot 𝑠, a different configuration is set at the RIS. Each configuration refers to a direction of 
reflection in which the RIS can steer the incoming signal. Such a protocol is based on sweeping 
through these different configurations in order to cover an area of interest, for both training and 
access phases. 

During the training phase, as this sweeping occurs, the UEs can estimate which of the 
configurations is most important to them. This configuration estimation phase relies on two main 
procedures: i) the design of the set of configurations available at the RIS, and ii) the design of 
an estimator at the UE’s side in such a way that they can decide the best configurations later. 
For the first, we have identified that the design of the set of configurations can be tackled by 
adopting a signal processing perspective, where each configuration can be seen as a sample 
of a function that describes the channel gain towards the BS and the UE. Hence, designing a 
set of configurations is equivalent to designing a sampling strategy. It is possible to obtain 
bounds on the duration of the configuration estimation phase by using the Nyquist-Shannon 
theorem and compressed sensing frameworks. Note that, by properly designing the set of 
configurations, the UEs can recover the function that characterizes the channel gain over 
configurations. Essentially, the second procedure makes use of recovery methods so that the 
UEs can know such a function. In this part, we used interpolation methods to reconstruct the 
signal, and posed compressed sensing problems, such as the basis pursuit denoising. Figure  
shows an example in which the magnitude of the channel gain is recovered at the UE’s side 
using the LASSO algorithm. After recovering the signal, the UEs are able to choose the best 
configurations to access the network. The design of the set of configurations used in the access 
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phase can be performed in a totally separated way to the one of the configuration estimation 
phase. Essentially, this means that the access phase can optimize to minimize the collision of 
UEs packets. 

 

Figure 4-8 Example of reconstruction of the magnitude information of the channel gain along the 
spatial domain using random sampling and compressed sensing methods. 

After the access phase, at the BS, the collision resolution is performed searching for singletons 
and performing SIC. 
The access policies under evaluation are the following: 
    1. Strongest-configuration policy (SCP): each UE chooses the access slot associated to the 
RIS configuration leading to the best channel quality; 
    2. Configuration-aware random policy (CARP): each UE compute a probability mass function  
for slot selection with probabilities proportional to the strength of the receiving signal of each 
configuration. Then, each UE decides the access slots by tossing a biased coin with probability 
previously computed. 

Results and outcomes 

As a benchmark, we use the unaware random policy (URP) which does not rely on the training 
phase; thus, the choice of the access slot is made randomly. Remarkably, RIS-empowered 
policies outperform random policies when the system gets crowded. The results reveal a very 
important trade-off for multi-user access, shown in Figure 4-9. On one hand, the use of the RIS 
to coordinate the access requests from the UEs better resolves collisions, increasing the 
average number of successful access attempts. On the other hand, the price to pay for RIS help 
is increased access delay since it depends on the training phase. 

Perspective and relation to other WP4 contributions 

The proposed random-access procedure can retrieve information on the CSI of the user for 
every configuration of the RIS involved in the access phase. At the end of the procedure, the 
BS is informed on which configuration each user prefers for transmission. This information can 
be used as initialization to RIS profile optimisation algorithms. 
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Figure 4-9 Performance of the random-access protocol. Here, 𝑺 denotes the number of 
configurations used. The plots show the average number of successful access attempts (left), 

and the optimal average throughput with respect to 𝑺 (right). [CSL22] 

4.4.4 Contribution #B-3: RIS Orchestration algorithms for online configuration tuning 
based on Reinforcement Learning 

Motivation and context 

Traditional RIS deployment methods involve solving an optimisation problem at every channel 
coherence frame, upon estimating the CSI, in order to find the (near) optimal RIS configuration. 
While effective, this methodology has the problem of high-computational costs per channel 
state. Additionally, since each channel state is considered as a standalone sub-problem, the 
optimisation has to be performed anew, without relying on information observed in the previous 
state(s). On the other hand, approaches based on machine learning have the advantage of 
being able to utilise past experience and, after the training period has ended, they are capable 
of predicting the appropriate configuration with low computational overhead (i.e. in real-time). 
The main disadvantage associated with this approach is the need for a precompiled data set of 
channel states and optimal configurations. Apart from the fact that the size of the training data 
set required for effective learning, cannot be known a priori, such methods are also expected to 
perform poorly when the distribution of the channel coefficients changes during the deployment 
phase. 

Motivated by the requirements of real-time configuration selection and environmental adaptivity, 
we tackle the sum-rate maximisation problem using a DRL approach, in which a trainable 
decision maker continuously observes the CSI and selects the RIS configurations (and 
precoding matrices) that it expects they will attain the optimal SINR. This neural-network-based 
agent is trained through a trial-and-error process, during which the observed sum-rates are seen 
as feedback on the selected configurations and precoders. This methodology has the 
advantage that it can be either deployed so that its training period continues perpetually (to 
attain adaptability to environmental changes), or use the pre-trained model without further 
feedback (in this case, there is no need for measuring and transmitting the received rate values 
to the decision maker, which entails lower network requirements). 

 

Methodology 

We first formulate the joint RIS and precoder beamforming as a RL problem, which entails the 
following correspondence between the RIS-enabled environment and the RL problem [ASH22]: 

 State: A vector comprised of all the channel coefficients between the BS and the RISs, 
the RISs and the UEs, and the BS and the RISs. 

 Action: A selection among the available RIS configurations and precoding codebook. 
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 Reward: The sum rate of all users (downlink case). 

 Transition: The agent at time step 𝑡  observes the state of the environment 𝒔௧  and 
selects an action 𝒂௧. The action is fed back to the environment, which in turns generates 
the reward 𝑟௧ and then proceeds to the next time step 𝑡 + 1 which involves new channel 
realisations. 

 Policy: A mapping between states and actions, i.e. a decision function. The goal of an 
RL problem is to learn a policy that maximizes the cumulative rewards. 

The RL formulation for a single time step is illustrated in Figure 4-10. Furthermore, we describe 
a generic version of a DRL algorithm designed to learn the intended policy in Algorithm 2 below. 
For conciseness, the algorithm is presented using the formulation and notation of [ASH22]. The 
DRL algorithms that will be presented in the next part of this contributions adhere to this general 
version, although specific details vary depending on the nature and intention of each method. 

 

 

Figure 4-10 Block diagram of the DRL formulation for the sum-rate maximization problem using 
the system and notation adopted in [ASH22]. 
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Results and outcomes 

 

A. A novel contextual-bandits DRL algorithm for RIS configurations was proposed: 
Typically, in RL problems, the Markov Decision Process [ASH22] framework is adopted which 
has resulted in state-of-the-art algorithms like Deep Q Networks (DQN). For the RIS-based 
problem at hand, it is demonstrated [ASH22, SAH22] that the problem can be cast to a 
Contextual Bandits formalism, which is easier to solve. Motivated by that observation, we 
proposed a novel DRL-based agent that is tasked to predict the expected reward for all available 
actions given a state observation, so that the optimal action can be selected. 

The performance of the proposed method is depicted in Figure 4-11.The rates are normalized 
with respect to the optimal achievable rate (obtained by exhaustively searching all configuration 
and precoding combinations). Both DRL methods greatly outperform the random baseline and 
achieve near-optimal performance, especially in smaller RIS sizes. DQN and the proposed 
Neural 𝜖-greedy achieve similar results but the Contextual Bandits has smaller computational 
requirements (DQN requires an effectively double capacity neural-network). The benchmark 
scheme is discussed below. 

 

B. The effectiveness of a naive but CSI-free Multi-Armed Bandits was examined: A relaxed 
version of the Contextual Bandits problem, referred to as Multi-Armed Bandits, is designed to 
learn action selection strategies without the need of state observations – relying only on the 
reward feedback. For the considered task, this has the effect that this control methodology does 
not rely on any CSI estimation, which greatly reduces the complexity of the network [ASH22]. 
We have utlised the Upper Confidence Bound (UCB) algorithm which keeps track of a running 
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average of the expected reward per action along with a confidence interval. Comparing its 
performance in the same setup as the aforementioned DRL algorithms (Figure 4-11), it can be 
seen that this method performs reasonably close to state-of-the-art deep learning approaches, 
despite its simplicity, offering a great proposition of value in simplified setups. Nevertheless, its 
performance is expected to decrease in more demanding cases. 

 

C. The problem of tuning large-scale RISs with DRL was investigated: In the above RL 
formulation, each available RIS configuration is treated as a separate action. When considering 
quantized phase shift hardware architectures, the cardinality of the action space grows 
exponentially with the number of unit elements, which imposes severe practical limitations on 
the size of the RISs than can be effectively controlled. Motivated by the fact that the predominant 
surface manufacturing processes result to 1-bit quantized RISs: 

1. We first deviate from the RL formulation so that we allow for the agents to select the 
phase shift of each individual RIS element independently, instead of deciding on the 
complete configuration. By denoting with 𝑁 the number of RIS elements, this entails 
taking 𝑁 binary decisions (which can be viewed as an 𝑁-sized binary vector) at each 
time step, rather than evaluating 2ே possible configurations, which greatly reduces the 
search space of the problem. 

2. We next present two extensions of state-of-the-art DRL algorithms that are specifically 
designed to deal with binary vectors as actions [SA22]. The first involves approximating 
the Q function in the DQN algorithm using neural network layers that operate specifically 
on binary vectors. The maximization step performed by DQN then corresponds to a per-
element activation/suppression operation. The network is illustrated in Figure 4-12. The 
second variation entails applying a discretization operation at the output of the Deep 
Deterministic Policy Gradients (DDPG) algorithm. DDPG has been designed for 
problems where the action space consists of continuous vectors. To that end, we have 
added a post-processing step that maps positive and negative values of the action vector 
to each of the two available phase shifts of the RIS. 

Figure 4-11 Normalized sum rates of the two DRL methods, UCB, and random baseline for the 
sum-rate maximization objective. 
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The performance of the proposed methods is depicted in Figure 4-13 for RIS sizes of up to 1500 
elements. Since it is infeasible to evaluate traditional RIS tuning methods in such large search 
spaces, non-optimized, randomly configured RISs were considered as a baseline. It can be 
inferred, that while the performance of the DRL methods exhibits a decreasing trend, both of 
those methods offer increased performance in moderate RIS sizes, while DDPG is able to 
consistently outperform the baseline in all experiments. This decreasing trend in the 
performance illustrates that the utilised method was not able to achieve satisfactory 

convergence. We attribute this behaviour to the fact that both the size of the neural networks 
used and the training period were purposely restrained and set to equal values for all 
experiments. This decision was taken to meet the computational demands of repeating the 
evaluation process in all different cases, despite the fact that it is expected that the 
computational resources should grow to meet the demands of the enlarged decision spaces in 
the more extreme cases.    Note that the problem of finding a suitable RIS configuration when 

Figure 4-12: Structure and operation of the Q network employed by the proposed extension of 
the DQN algorithm, termed bin-DQN [SA22]. The Q function is approximated through (4) and the 
best action vector (i.e. phase shift for each element) can be derived in closed form through (5). 

Figure 4-13: Performance of the modified DRL methods (bin-DQN and bin-DDPG) in very large 
RIS sizes, where other RIS tuning methods are infeasible. 
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the number of (discrete) unit elements becomes large remains, in large, untreated, and that 
naively configuring the RIS at random leads to an exponentially decreasing performance. 

 

D. A Multi-hop RIS system has been investigated to combat the strong non-LOS 
attenuation in the THz bands: Since THz signals suffer from severe propagation attenuation 
and absorption effects, a system with multiple RISs is envisioned so that the signal arrives at 
the end user after experiencing multiple RIS-to-RIS reflections. To orchestrate the system, the 
DDPG algorithm was employed to centrally decide on the cooperative beamforming of all the 
RISs (infinite resolution phase shifts were assumed) [HYA20]. The performance of the proposed 
method and system is illustrated in Figure 4-14. The DRL method with multiple hops is able to 
outperform the benchmark approaches in terms of the total throughput when larger distances 
are involved. The performance of the system was also examined under different number of BS 
antennas, RIS elements, and end-users for the two-hop case. It is highlighted that larger RISs 
can facilitate larger numbers of users. 

 

 

Perspective and relation to other WP4 contributions 

The family of methods of this contribution are suitable for RIS control in wireless environments 
where the channel states change over time, by leveraging the adaptability and real-time decision 
making benefits of DRL. The operation of such schemes relies on accurate and fast channel 
estimation techniques, such as the ones proposed in this deliverable. 

 

4.4.5 Contribution #B-4: Supervised learning of optimal phase configuration based on 
user positions 

Motivation and context 

In order to perform RIS beamforming, the RIS(s) phase configuration(s) must be optimized. The 
optimal configuration depends heavily on the position of the Receiver (RX) at a given time since 

Figure 4-14: Performance of the proposed DRL multi-hop scheme. Notation follows that of 
[HYA20]. (Left) Zero Forcing (ZF) precoding without RIS and alternating RIS beamforming were 
selected as benchmarks. (Right) Behavior of the system under different parameters (number of 

hops, number of BS antennas).  number of RIS elements, and number of users). 
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the beam(s) must be directed toward it. When the RX changes its position, the optimization 
procedure must be performed anew, which may be costly operation (in terms of computational 
resources), especially when multiple RISs are involved. Under this view, the wireless system 
would benefit from a learning mechanism that is designed to interpolate optimal RIS phases to 
given RX positions, based on previously observed positions and optimal solution pairs. 

 

Methodology 

A deep learning approach is utilised to train Deep Neural Networks that are designed to predict 
the optimal configuration for given 3D RX coordinates [ASB20]. The system under 
consideration, depicted in Figure 4-15, is a downlink communication example with includes 
multiple RISs, in which the TX-RX link is attenuated due to the presence of a blocker. The RX 
is assumed to be able to move freely inside the designated area. Before the training phase, the 
data set is constructed by sampling RX positions and solving the multi-RIS rate optimization 
problem using random channel realisations. When the solution is attained, the position-
configuration tuple is stored as a single data point in the training set. The same process is 
repeated to construct the test set. The DNN receives the position as input and outputs a 
predicted configuration. The mean squared error between the optimal and predicted 
configuration is used as the network’s loss function. 

The interested reader can refer to [ASB20] for all the details on the system model, problem 
formulation, and algorithmic solutions. 

 

Results and outcomes 

Three different setups are selected for the evaluation process, the first two without the presence 
of the wall/blocker. The proposed methodology was examined both as a centralized approach 
(i.e. a common DNN that predicts the configuration of all RISs) and as individually deployed 
networks onto the RIS controllers (each one controlling its own RIS). As an upper bound, the 
same training process were repeated, although the networks were now received the channel 
realisations as inputs, instead of the positions. The results are depicted in Figure 4-16, in terms 
of the average normalized rate (over the optimal rate of exhaustively solving the optimization 
problem every time) over the training set. It can be observed that in all cases, the DNN-based 
methods are able to attain near-optimal performance in the setups considered. When the 
blocker is not present, the high-quality information of the channel knowledge does not give any 
significant advantage. Conversely, in the highly attenuated direct link of Setup 3, it is illustrated 
that the knowledge of the exact CSI can be utilised by the deep learning algorithm to achieve 

Figure 4-15: The downlink communication system considered for supervised learning of optimal 
configuration learning. 
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higher quality rates, rather than position-only inputs. In all cases, the individual and centralized 
approaches compared equally. 

Perspective and relation to other WP4 contributions 

The proposed method of this contribution has the advantage of requiring low computational 
requirements during deployment phase (performing inference on neural networks is 
substantially less demanding than training), albeit with the extra overhead of the data collection 
step prior to the deployment phase. Note however, that the operation relies heavily on accurate 
position estimation of the RX, which is the focus of Work Package 5 of this project. A limitation 
of this study is its adaptability to changes in the channel states through time. In such cases, the 
contribution that is based on reinforcement learning may be preferred, although the 
computational cost is higher. 

 

4.4.6 Contribution #B-5: Reconfiguration of the physical layer for multi beamforming 

Motivation and context 

Recent works have proven that the operation of the RIS can be tuned during and after 
deployment. This is achieved by introducing tunable or switchable electronic components within 
the unit cells and adding appropriate means of control to achieve (re)programmability. Such 
complexity can often lead to uneconomical designs and fabrication processes, which is an 
obstacle towards commercializing the applications within 5G networks, such as for Vehicle-to-
everything communications (V2X). One way to justify the costs for utilizing RISs in use-cases 
as pervasive as V2X (which is a form of multi-receiver communication via a single transmitter) 
is to optimize their operation. To this end, we note that RIS can actually perform multiple 
functions concurrently, so one design can serve several purposes. Consequently, multi-receiver 
communication scenarios present a very compelling use case. In a multi-receiver 
communication scenario, the broadcast station should adequately radiate electromagnetic 
waves toward the location of the receivers. A wide beam radiation pattern can provide such a 
requirement. However, a wide beam is detrimental as it radiates energy over a huge space. 
This strategy is not feasible for mmWave spectrum due to the high propagation losses and 
blocking effects. The proper solution is to engineer the radiation pattern with respect to the 
location of the receivers. Hence, independent control on the multiple beams is required. 

 

Figure 4-16: Evaluation process of the supervised learning algorithm for predicting the optimal 
RIS configuration. The networks receive as input either RX position data or channel information. 
Two variations are considered: (i) A centralized approach where the neural network controls all 

the surfaces and (ii) an individual approach where each RIS includes its own neural-network 
based controller. The baselines include selecting the RIS configurations at random and not 

utilizing any RISs (when the direct link is present). 
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Methodology 

One way to engineer a multi-beam radiation pattern is to control both amplitude and phase 
(amp/phs) reflection of the unit cells, but since amplitude reconfiguration increase the overall 
loss, this is not an efficient approach. Another solution is to switch between the users in the time 
domain, i.e., time division multiplexing (TDM). However, satisfying the 5G key performance 
indicators (KPIs) for latency renders the TDM approach inefficient. Additionally, dividing RIS 
area i.e., space division multiplexing (SDM), to engineer the wavefront for multiple beam 
objective requires a very large RIS. Unlike previous methods that require amplitude reflection 
control as well as phase reflection control of the unit cells, our proposed strategy requires phase 
reflection reconfiguration only [TTM22, TJA22]. With this approach the MS realizes multiple-
beam radiation pattern with independent control of the beams. Based on realistic system 
parameters, we then evaluate the performance of the proposed framework by analyzing the 
throughput for indoor and outdoor scenarios, given the broadcast mode of operation. Note that, 
the broadcast scenario also entails the multicast scenario, which can be utilized by the radio 
source to communicate with multiple receivers at the same time. We compare our results to the 
baseline system and show that by taking advantage of the RIS, a considerable increase in the 
overall system throughput can be experienced. By considering the energy conservation law, in 
a closed system, the total energy from the impinging waves should be equal to the energy 
carried by the scattered beams. Then, there must be an optimal reconfiguration profile with 
phase-only control by which we can engineer the desired multi-beamforming. 

෍ 𝐴௠௡௞𝑒஍೘೙(ఏೝೖ,థೝೖ)

௄

௞ୀଵ

= 1 𝑒௝ஏ೘೙ 

where Φ௠௡(𝜃௥௞ , 𝜙௥௞) is the phase gradient of 𝑚𝑛 unit cell for the kth-beam aiming the position 
of the users with reflection angle (𝜃௥௞ , 𝜙௥௞) and K is the number of users. The simplest solution 
to satisfy equation (above) is to assume all of the beam amplitude are identical 𝐴௠௡௞ = 𝐴௠௡; 
𝑘 ∈ [1, 𝐾]. Then we can define this coefficient as the absolute value of the phase gradient 
summations. 

𝐴௠௡ =
1

| ∑ 𝑒஍೘೙(ఏೝೖ ,థೝೖ)௄
௞ୀଵ |

 

Assuming small unit cell size (𝐷௨ < 𝜆/2 ), surface current distribution on each unit cell is 
approximately uniform. Based on Huygens principle, we can assume each unit cell a point 
source. The total scattering field can be regarded as the superposition of the scattering wave 
from each unit cell   

𝐸(𝜃, 𝜙) =  ෍ ෍ 𝑒௝௞బ఍೘೙𝐴௠௡

ெ

௠ୀଵ

ே

௡ୀଵ

෍ 𝑒஍೘೙(ఏೝೖ,థೝೖ)

௄

௞ୀଵ

  

Now by using above equations, we can implement a multi-beam radiation pattern.  

 

Results and outcomes 

Figure 4-17, shows the radiation pattern and relative phase gradient of a square RIS with lateral 
size of 𝐷௠ = 8𝜆, unit cell size of 𝐷௨ = 𝜆/3 and 8 number for the valid states (0, 𝜋/4, 𝜋/2, 3𝜋/4,
𝜋, 5𝜋/4, 3𝜋/2, 7𝜋/4).  
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Perspective and relation to other WP4 contributions 

To take full advantage of RIS technology and provide significant performance improvements for 
wireless networks, a proper reconfiguration of the reflection coefficients of unit cells is required. 
In this work, we propose an efficient reconfiguration technique providing control over multiple 
beams independently. Compared to time-consuming optimization techniques, this strategy 
utilizes an analytical method to configure the unit cells for multi-beam radiation. This method is 
easy to implement, effective and efficient since it only requires phase reconfiguration. 

 

5 Design of Multi-User Techniques for RIS-Empowered Mobile 
Edge Computing 

Mobile edge computing (MEC) represents one of the main technological enablers of 6G 
networks, which are envisioned to provide a plethora of new services (including verticals), such 
as Industry 4.0, Internet of Things (IoT), and autonomous driving, building on the tight integration 
of communication, computation, learning, and control. In this scenario, the goal of MEC is to 
move cloud functionalities (e.g., computing and storage resources) at the edge of the wireless 
network, enabling UEs to offload heavy computational tasks to nearby processing units or ESs 
with the aim of reducing energy consumption and/or service latency [BSD14]. Also, among the 
many possible applications envisioned by 6G, there is now a huge interest from several research 
communities in performing distributed, low-latency and reliable edge learning, in which every 
UE has access to a tiny fraction of the data and low-latency inference/training are performed 
collectively and distributively at the wireless network edge [MDB21]. However, moving toward 
millimeter wave (mmWave) communications (and beyond), poor channel conditions due to 
mobility, dinamicity of the environment, and blocking events, might severely hinder the 
performance of MEC systems. In this context, a strong performance boost can be achieved by 
empowering MEC systems with RISs, with the aim of enabling applications running at the edge 
of the wireless network with the required quality of service in terms of latency, energy, and 
accuracy. The overall system must then be designed in order 
to jointly optimize the network resources by dynamically allocating transmission and 
computational parameters, i.e., rate and clock frequencies, as well as the RIS reflectivity 
parameters. The goal of this section is to summarize and describe the main achievements of 
the RISE-6G project in this context. 

5.1 Contributions from RISE-6G 

The main contributions made by RISE-6G in the design of RIS-empowered MEC are listed 
below in Table 5-1.  

Figure 4-17: Normalized E-field distribution in logarithmic scale (dB) radiating with 4 beams at 
arbitrary positions with 8 states. 
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Table 5-1: Main architectural characteristics: Contributions from RISE-6G 

 
 

5.1.1 Contribution #C-0: Joint optimization and scheduling of communication and 
computation resources for RIS-empowered Mobile Edge Computing 

Motivation and context 

In this section, we propose a dynamic computation offloading algorithm for RIS-empowered 
MEC. We assume an application that continuously generates data to be offloaded to an ES for 
processing, e.g., video streaming for anomaly detection. The problem is to enable dynamic 
computation offloading with minimum energy expenditure, while guaranteeing strict delay 
constraints dictated by the application running at the ES. To this aim, we have formulated a 
long-term optimization problem aimed at adaptively allocating radio resources of multiple edge 
devices and an AP, together with computational resources of an ES and reflectivity parameters 
(i.e., phase shifts) of multiple RISs [DMC21]. The aim of this algorithmic framework is to reduce 
the long-term average energy spent by all the network entities (i.e., UEs, AP, ES, and RISs), 
while guaranteeing a long-term constraint on the average end-to-end delay, computed as 
previously expressed in Section 2.1 for dynamic computation offloading. To this scope, we 
define a weighted system energy function given by: 

 
where 𝑒௞(𝑡) is the energy spent by each user 𝑘 to upload data to the AP, in order to enable the 
task offloading; 𝑒௖(𝑡) is the energy consumed by the ES to process data; 𝑒௔(𝑡) is the energy 
that the AP consumes to exchange data with the server, either if is in sleep or in active mode, 
𝑒௜

௥(𝑡) represents the energy spent by the i-th RIS. Finally, 𝜎 ∈ [0,1] is a weighting parameter to 
be chosen, which enables to tune the optimization toward a pure UEs-centric strategy (i.e., 𝜎 =
1), a pure network-centric strategy (i.e., 𝜎 = 0), or a holistic system design (i.e., 𝜎 = 0.5).  
Also, we consider a MEC system endowed with I passive RISs, where the i-th RIS is composed 
of N reflecting elements. In the sequel, we will use the overline notation for uplink parameters, 
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and the underline notation for downlink. Then, letting 𝚽(𝑡) be the vector collecting the phase 
shifts of all RISs in the system, and assuming a Single Input Single Output (SISO) 
communication system, the uplink transmission rate between user k and the AP reads as 
 

𝑅ഥ𝑘(𝑡) =  𝐵ഥ𝑘 log
2

(1 +  𝑎ത𝑘൫𝚽(t)൯𝑝ത
𝑘

(𝑡)) 
 

for all 𝑘 ∈ {1, … 𝐾}, where: 
 

a୩൫Φ(t)൯ =  
| h୩

ୟ
(t) + ∑ 𝒉ഥ௞,௜(𝑡)்ூ

௜ୀଵ 𝑑𝑖𝑎𝑔൫Φ௜(𝑡)൯ 𝒈ഥ ௞,௜
௔ (𝑡)|ଶ

N଴ B୩

 

 
is the RIS-dependent normalized uplink channel coefficient, �̅�௞(𝑡)denotes the power transmitted 
by user k at time t, and  ℎത௞

௔(𝑡) represents the direct uplink channel coefficient between user k 
and the AP; whereas, ℎത௞,௜(𝑡)  and �̅�௞,௜

௔ (𝑡)  are vectors containing all the uplink channel 
coefficients between user k and RIS elements, and between RIS elements and the AP, 
respectively. Similar expressions hold also for the downlink channel from the AP to the UEs. 

 

Methodology 

Leveraging Lyapunov stochastic optimization, the long-term stochastic formulation is solved 
using a sequence of simpler deterministic problems of the form [DMC21]: 
 

 
 

The first part of the objective function involves several terms related to the service latency, which 
depends on uplink and downlink rates (i.e., 𝑅ത௞(𝑡) and 𝑅௞(𝑡)) and ES CPU clock frequencies 
𝑓௞(𝑡), weighted by the queue terms 𝑄௞

௥(𝑡), 𝑄௞
௟ (𝑡), and 𝑍௞(𝑡) used to control the long-term delay 

constraint. The second term of the objective is the weighted system energy previously 
introduced, multiplied by a parameter V that must be properly chosen. Thus, in a very natural 
way, the solution of the deterministic problem implements a trade-off between energy and 
latency that can be tuned using the control parameter V. 
Interestingly, the optimization problem can be split into sub-problems to be solved during the 
first portion of each time slot (as explained in D4.1, section 3.3.5). Then, the overall procedure 
for the proposed RIS-empowered dynamic mobile edge computing is performed as follows: 
 

1. Perform a greedy optimization to find the RISs phase shifts, aiming at selecting in an 
iterative fashion the phase shift of the RIS reflective elements that maximize data 
transmission (in both uplink and downlink). 

2. Allocate the optimal uplink transmission power with closed form solutions and optimal 
downlink powers either with closed form solutions or a water-filling like algorithm. 

3. Evaluate if the state of the AP should be in sleep or in active mode, based on an objective 
function of previously optimized resources. 

4. Compute the optimal CPU scheduling through the solution of a linear problem, requiring 
maximum a few iterations equal to the number of involved devices. 

5. For the rest of the time slot, perform the computation offloading or required tasks and then 
update physical and virtual queues. 
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The interested reader can refer to [DMC21] for all the details on the system model, problem 
formulation, and algorithmic solutions. 
 

Results and outcomes 

To illustrate the potential advantages introduced by the proposed methodology, we consider a 
scenario composed by 5 edge devices, 1 AP and 2 RISs with 100 elements each. We assume 
that an obstacle obscures the direct communication between the UEs and the AP, with an 
additive path loss attenuation equal to 30 dB. In Figure 5-1 (left), we illustrate the E2E delay as 
a function of the average energy spent by the overall system, for different scenarios: i) without 
RIS; ii) with 1 or 2 RIS and for block or full optimization (meaning the phase shift are optimized 
per group or each of them). The curves are obtained by increasing the Lyapunov trade-off 
parameter V from right to left. By increasing V, each curve reaches a different value of the 
energy consumption, while converging to the desired delay bound (equal to 50 ms). As 
expected, all scenarios with RISs outperform the scenario without RIS in terms of energy-delay 
trade-off, with the full optimization (with both 1 and 2 RISs) achieving the largest gain. Also, we 
consider a sub-optimal RIS optimization procedure that divides the RIS in sub-block and 
associates the same phase shift within the block. Clearly, the block optimization (with Nb = 25 
and Nb = 50) reduces complexity at the cost of increased energy with respect to the full 
strategies. Finally, we explore the performance in terms of energy consumption in the user-
centric case (𝜎 = 1), by varying the number of blocks 𝑁௕  and the number of bits 𝑏௜  used to 
optimize RIS’s phases. To this aim, in Figure 5-1 (right), we illustrate the energy consumed by 
UEs as a function of the number of blocks 𝑁௕. As expected, by increasing the number of blocks, 
the energy consumption decreases thanks to the larger degrees of freedom in optimizing the 
RISs. Also, increasing the number of bits yields a further reduction in the energy consumption.  
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Figure 5-1: (Left) Average E2E delay versus Average system energy consumption, for different 
scenarios. (Right) Average user Energy consumption versus number of blocks composing the 

RIS, for different number of quantization bits. 

 

Perspective and relation to other WP4 contributions 

The method allows for several generalizations, spanning from the incorporation of sophisticated 
RIS channel models to the definition of the specific applications running at the edge server. The 
method hinges on the RIS channel estimation methods developed in WP4. 

 

5.1.2 Contribution #C-1: RIS-empowered Mobile Edge Computing over Intermittent 
mmWave Links 

Motivation and context 

In this section, we explore how RISs can assist MEC in overcoming the inherent problems 
towards high-reliable 6G wireless networks. Then, building on the promising convergence of 
RISs and MEC, we mainly focus on a joint optimization of radio and computing resources, down 
to the wireless propagation environment properties. We propose a dynamic optimization 
algorithm that tackles jointly communication and computation aspects. To this end, we formulate 
the communication edge computing problem as a long-term optimization aiming to minimize the 
average users’ transmit power, under MEC service delay constraints. We develop this algorithm 
for a multi-user MIMO (direct and RIS-aided) system by jointly selecting uplink user precoding, 
RIS reflectivity parameters, and computation resources at a ES collocated at the AP serving the 
users.  For this purpose, we investigate the problem based on a weighted sum of the E2E 
channel matrix, for each user. Weights are representing two blocking state factors (equals 1 if 
the direct (indirect) link experiences a blockage event). These factors are respectively related 
to direct channel between the user and the AP and to the indirect link (comprising the channel 
between the user and the RIS, and the channel between the RIS and the AP): 
                                     

𝑯𝑘 = ൫1 −  𝛽
𝑘,𝑎

൯𝑯𝑘,𝑑 + ൫1 −  𝛽
𝑘,𝑟

൯𝑯𝑟,𝑎 𝚽 𝑯𝒌,𝒓 

 
Then, obviously, the data rate experienced by each user is computed with the blocking 
weighted channel: 
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where 𝑄௞(𝑡) ∈ 𝐶௄×௄  is the precoding covariance matrix of user k at time t, with K being the 
number of antennas per user and 𝑊௞ denotes the bandwidth assigned to user k. 
 

Methodology 

The optimization problem is held for the typical case of computation offloading, i.e. the Uplink 
traffic.  Thanks to Lyapunov stochastic optimization, we rigorously transform the original long-
term problem into a per-slot problem, thus defining an instantaneous surrogate objective that, 
in the long-term, guarantees the desired performance:                             
The overall proposed dynamic resource allocation procedure is described in Algorithm 1.  

 

1- The step 1 of the Algorithm involves the radio resource allocation sub-problem including 
the optimization of user covariance matrices {𝑄௞(𝑡)}௞ and RIS parameters 𝒓(𝑡) and is 
formulated as: 

                          
            The problem is solved while building on an alternating optimization strategy that   
            couples a projected gradient step for the RIS parameters, and a water-filling solution   

            for the users’ precoding. 

 The step 1.1 is of low complexity and allows to allocate the optimal 𝒓(𝑡) with a 
projected gradient  based closed form solution. The gradient is a weighted sum of 
different terms (corresponding to different users), where the weights include both 
communication and computation queues. This naturally introduces a scheduling of 
the RIS, which is therefore optimized to prioritize users with worse queueing states. 
 

 The step 1.2 is related to the problem with respect to the uplink covariances, which 
presents as well less complexity once the RIS configuration was fixed. For a generic 
user k for which the communication buffer holds upper than that of the computation, 
i.e.  𝐵௟,௞(𝑡) > 𝐵௥,௞(𝑡)  , the problem is convex and admits a water-filling based 
solution. 

2- The step 2 involves the computation resource allocation sub-problem through which 
optimal frequencies are iteratively allocated to each user [AMD22]. 

3- In the last step, both physical queues, i.e. communication and computation, are 
updated. 

 



 

Document: H2020-ICT-52/RISE-6G/D4.2  

Date: 30/06/2022 Security: Public 

Status: Final Version: 1.2 

 

RISE-6G Public 67 
 

Results and outcomes 

We consider a scenario with multiple users aiming to offload their tasks to an ES collocated 
at the AP serving the users. All channels are generated through the available tool, the open-
source SimRIS Channel Simulator. 
 

Name Symbol Value 
Number of users N 6 

Bandwidth B 1 Mhz 

Carrier frequency f 28 Ghz 

Noise power spectral density 𝑁଴ -174 dBm/Hz 
Slot duration τ 10 ms 

Arrival rate  1 Mbps 

The user maximum transmit power 𝑃௞
௠௔௫ 100 mw 

Transmit and receive antennas 𝑁௨ and 𝑁௔ 4 

RIS elements M 64 
The maximum available CPU cycle 
frequency 

𝑓௠௔௫ 4.5 Ghz 

The number of CPU cycles per bit 𝐽௞ 500 

                                                   Table 5-2 Simulation Parameters. 

For comparison purposes, we assume tow reference strategies, Alg. 1 where instantaneous 
knowledge of  𝛽௞,௔𝜖{0,1}(𝛽௞,௥𝜖{0,1}) is assumed and Alg. 1, statistical where only a statistical 
knowledge of the blockage, i.e. the blocking probabilities 𝒑௞,௔(𝑡) ∈  [0,1]൫𝒑𝒌,௥(𝒕) ∈ [0,1]൯  is 
assumed. In this latter, Algorithm 1 is used, but 𝛽௞,௔(𝑡) and 𝛽௞,௥(𝑡) are replaced by 𝒑௞,௔(𝑡) and  
𝒑𝒌,௥(𝒕), for the optimization. 

                                                  

Figure 5-2: Average transmit power versus AP blocking probability               

 
Besides the results presented in section 3.3.5 of D4.1 (Figure 3-15: Delay-Energy trade-off for 
different strategies), we illustrate in Figure 5-2, the gain in terms of average transmit power of 
each strategy with respect to the non RIS case, as a function of the direct link blocking, for a 
fixed E2E delay bound of 150 ms, obtained by tuning the trade-off parameter V. As can be seen, 
as the blocking probability increases, the gain notably increases with the Alg. 1 strategy, (up to 
10 dB for  𝒑௞,௔ = 0.7), also with quantized phases. Conversely, the gain of Alg. 1, statistical is 
visible only for higher blocking probabilities, due to the fact that, in this case, the 
channel knowledge is well-matched to the real channel states. Eventually, this implies that 
unreliable blocking knowledge is critical for the performance.  
Overall, optimizing the RIS through step 1.1 of Algorithm 1 leads to a better exploitation of the 
indirect path. Therefore, the use of an RIS is prominent to satisfy a reliable MEC-based task 
offloading in case of bad conditions of the direct link. 



 

Document: H2020-ICT-52/RISE-6G/D4.2  

Date: 30/06/2022 Security: Public 

Status: Final Version: 1.2 

 

RISE-6G Public 68 
 

Perspective and relation to other WP4 contributions 

The investigated tradeoffs will be re-defined while including the control of RIS as discussed and 
developed in WP4. Also, when practical phase shifts and antenna losses at UEs, AP and RIS 
are used in such a way investigate the impact of hardware constraints on the results. 
 

5.1.3 Contribution #C-2: Adaptive Federated Learning empowered by Reconfigurable 
Intelligent Surfaces 

Motivation and context 

In the context of edge learning, we propose an optimization framework for adaptive federated 
learning empowered by RISs [BMD22]. The aim of federated learning (FL) is to train a machine 
learning model (e.g., a neural network) in a distributed fashion at the wireless network edge, 
where UEs collect data, perform local gradient updates, and then send intermediate estimates 
to the ES (typically co-located with the AP) that aggregates the local information to provide the 
final model parameters. An example of RIS-empowered FL scenario is given in Figure 5-3. 

 

Figure 5-3: RIS-empowered federated learning. 

 
In this setting, it is important that the UE with the best data for the specific learning task can 
indeed communicate with the ES, to enable good training performance with low-latency 
updates. However, blocking and variability of the wireless channel could jeopardize the correct 
behavior of federated edge learning, if not properly handled. In the sequel, we propose to endow 
federated learning with multiple RISs, with the aim of boosting the training performance in terms 
of trade-off between the energy spent for learning, the latency required for training, and the 
accuracy of the final learning task. In particular, the proposed methodology minimizes the long-
term average energy consumption of the system, while guaranteeing long-term average 
constraints on latency, learning performance (i.e., accuracy) and convergence rate. The 
dynamic algorithm is designed to optimize communication resources (i.e., UEs scheduling, 
transmission powers, quantization bits), RISs reflectivity parameters, and computation 
resources (i.e., local and remote CPU frequencies to perform local gradients at the edge devices 
and global estimation of the learning task at the ES).  

Methodology 

As a federated learning method, we assumed a distributed stochastic gradient descent (D-SGD) 
strategy. Then, we model the system power consumption (and the latency needed) for each 
iteration of D-SGD as the sum of three components: power (and delay) spent to local 
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computation, power (and delay) needed to upload data from devices to the ES through RIS-
empowered links, and power (and latency) to perform estimate aggregation at the ES. These 
quantities depend on the optimization variables encompassing both communication and 
computation aspects of the problem. In addition, the proposed method is endowed with an 
online mechanism that estimates the learning performance and the convergence rate of D-SGD 
in a totally data-driven fashion. Then, we have formulated a long-term optimization problem 
aimed at minimizing the long-term average power spent by all the network entities (i.e., UEs, 
AP, ES, and RISs), while guaranteeing a long-term constraint on the average latency required 
for training, the average accuracy of the learning task, and the convergence rate of the method. 
Hinging on Lyapunov stochastic optimization, the problem can be simplified and solved using a 
sequence of deterministic problems that read as [BMD22]: 

 
where 𝐿෨௧ , 𝐺෨௧ , and 𝛼෤௧  are the latency, accuracy, and convergence rate metrics at time t, 
respectively; whereas 𝑝௧

௧௢௧  represents the system power consumption weighted by the 
parameter V. The parameters 𝑍௧, 𝑄෠௧, and 𝑌෠௧ represent the virtual queues that are used to control 
and satisfy the long-term constraints. Thus, in a very natural way, the solution of the 
deterministic problem implements a trade-off between power, latency, and accuracy, which can 
be tuned using the parameter V. 
 
The solution of the per-slot problem can be performed in two stages: 
 

1. Greedy optimization algorithm to select phase shifts of the RIS, aiming at maximizing 
RIS-aided channel gains for each communication link, weighted by a factor advantaging 
devices with the worst direct link with the AP/ES. 
 

2. In the second stage, for each possible training batch size, the method starts from the 
empty set of transmitting nodes and iteratively adds the most convenient devices, 
selecting jointly the best number of quantization bits and the associated edge resources 
computed in closed forms. The method keeps adding devices until the resulting value of 
the objective function decreases and stops when there is no more incentive in letting 
other nodes to transmit any bit of information.  

 
The interested reader can refer to [BMD22] for all the details on the system model, problem 
formulation, and algorithmic solutions. 

 

Results and outcomes 

We assess the performance of the proposed method, considering a federated learning task 
aimed to train a deep convolutional neural network classifier, in a scenario composed by one 
AP equipped with an ES, 9 UEs, 6 of whom having their direct path to the AP attenuated by an 
obstacle, and one RIS equipped with 1-bit discrete phase shifters. In Figure 5-4 (left), we show 
the average uplink power consumption versus the average latency, for different values of 
average accuracy, comparing the cases where RISs are exploited or not, and a baseline given 
by an equal-rate with all the agents always transmitting  (i.e., no transmission scheduling is 
implemented). As expected, the trade-off gets worse imposing a stricter requirement on the 
accuracy, due to the larger power (and number of bits) necessary to obtain the target 
performance. Also, we can see the gain obtained thanks to the presence of the RIS in the FL 
task, and the superior performance of the proposed method w.r.t. the baseline. 
 
Finally, in Figure 5-4 (right (a)), we illustrate the temporal behavior of the estimated accuracy of 
the FL algorithm, obtained for different values of the learning rate α, fixing the accuracy to G = 
0.8; also, at time slot 210, we change the accuracy requirement from G = 0.8 to G = 0.9 for the 
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curve with α = 0.1, introducing a level of non-stationarity. Then, in Figure 5-4 (right (b)), we show 
the instantaneous latency required by the proposed FL strategy to perform one iteration, 
together with the latency constraint L = 50 ms. As we can notice, the proposed method is able 
to obtain the desired learning performance, while controlling the convergence rate, and 
satisfying the required latency constraint. Furthermore, the method can react promptly to 
changes in the accuracy requirement, exhibiting powerful learning and adaptation capabilities 
in a fully data-driven fashion. 
 

             

Figure 5-4: (Left) Average communication power versus average delay, for different scenarios 
and strategies. (Right) (a) Accuracy versus time. (b) Latency versus time. 

 

Perspective and relation to other WP4 contributions 

The method allows for several generalizations, spanning from the incorporation of sophisticated 
RIS channel models to the definition of more general federated training algorithms. The method 
hinges on the RIS channel estimation methods developed in WP4. 

 

5.1.4 Contribution #C-3: Dynamic Computation Offloading over frequency-selective 
RIS-empowered communications 

Motivation and context 
The last contribution [MCK22] of this section focuses on the intersection between the possibility 
of adapting wireless propagation as per end users’ convenience according to specific service 
requirements, enabled by RISs, and the possibility to bring a powerful distributed computing 
environment at the wireless edge, enabled by the MEC. In particular, we leverage on the 
recently developed Lorentzian model for RIS reconfiguration parameters, which allows the 
optimization of the wireless communication through frequency dependent RIS response 
profiles. From the user perspective, the goal is to minimize the power spent by the device for 
processing data locally and then transmit information units in order to enable a desired 
computation offloading task, within a maximum required service delay. Specifically, for local 

computation, the user device spent an amount of power: 𝑝௧
௟ = 𝛾 ൫𝑓௧

௟൯
ଷ
, experiencing a delay 

𝐷௧
௟ =  𝑤௧

௟/𝑓௧
௟ , where 𝑓௧

௟ is the portion of CPU dynamically allocated to process the workload 
𝑤௧

௟ during each time slot. For transmission, let us consider a multi-carrier system with subcarrier 
spacing 𝑊and central frequency 𝑓௕ on frequency bin 𝑏 ∈ 𝐵, with 𝐵 the set of bins, and 𝑝௕,௧ the 
portion of the user transmit power dynamically allocated in each bin, under the constraint of the 
maximum power 𝑝௠௔௫ available at the device: 𝑝௧

௨ = ∑ 𝑝௕,௧ ≤ 𝑝௠௔௫௕∈஻ . Then, the communication 
delay is computed as: 𝐷௧

௨ =  𝐴௧/𝑅௧ , where the uplink rate is given by 𝑅௧ = 𝑊 logଶ(1 +
 𝛼௧(𝑓௕)𝑝௕,௧), and the overall channel to noise ratio on frequency bin 𝑏 can be written as: 
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Together with the optimization of radio and computing resources, here we jointly also optimize 
frequency dispersive aware RIS configuration, i.e. multi-carrier frequency selective RIS 
elements’ responses. We consider the response of each 𝑛-th element of the RIS as for a 
polarizable dipole and then, following the Lorentzian discrete form on subcarrier 𝑓௕, we can 
compute each element of the diagonal matrix 𝚽, as: 
 

 
 

where 𝑓௡,௧ , 𝑆௡,௧, and 𝜒௡,௧ are the element-dependent oscillator strength, resonance frequency, 
and quality factor, which can be externally controlled, in each time slot 𝑡.  
 
Methodology 
We formulate a long-term optimization problem aimed at minimizing the average system power 
consumption constrained to average latency constraints. Thus, hinging on Lyapunov stochastic 
optimization, we convert the long-term problem into a sequence of lower complexity 
deterministic problems, with convergence and asymptotic optimality guarantees with respect to 
the original problem. More specifically, to deal with long-term constraints, we make use of 
mathematical models known as virtual queues, able to track the state of the system in terms of 
constraint violations, to take control actions, thus driving the system towards efficient and 
reliable operations. Then, the final optimization problem reads as:  

 

 In particular, 𝑌 and 𝑍 are virtual queues 
handling delay constraints, on average and probabilistic respectively, for each time slot 𝑡. The 
problem can be then simplified introducing an upper bound and an approximation, and finally 
split into three sub-problems, with low-complexity and efficient solutions. The main steps of 
the proposed method are: 
 

a) Solve a convex sub-problem to find optimal speed-clock scheduling 𝑓௧
௟ , for each time 

slot, in closed-form solution.  
 
b) Solve the optimization of RIS’ parameters, through a heuristic algorithm, building on 

the one proposed in [DMC21], in which RIS elements responses are subsequently 
selected with the goal of increasing a weighted sum of channel power gains. Here, 
to deal with frequency selective channels, we propose to subsequently select RIS 
parameters (i.e. 𝑆௡,௧, 𝑓௡,௧ and 𝜒௡,௧) for each element, in order to maximize the sum of 
the channel power gains over all subcarriers.  
 

c) Given an RIS configuration, we can finally solve a convex problem to find the uplink 
power allocation over subcarriers 𝑝௕,௧, with an efficient algorithm, such as interior-
point method. 

The interested reader can refer to [MCK22] for all the details on the system model, problem 
formulation, and algorithmic solutions. 
 
Results and outcomes 
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We assess the performance of our proposed optimization method through a scenario composed 
of one user device, one AP and one RIS with 100 elements. Time is divided in slots of equal 
duration, during each slot Rayleigh fading SISO channels are generated, with 4 delayed taps, 
and their Fourier transform is performed to obtain the channel transfer functions. We compare 
the RIS-aided performance with the Lorentzian model and our frequency selective-aware 
optimization, termed as Lorentzian RIS, with two benchmarks: i) the case without the RIS, 
termed as no RIS; ii) the frequency flat RIS case, termed as flat RIS, in which the RIS response 
does not follow the realistic Lorentzian model, but it is flat across all frequencies. In Figure 5-5 
(left), we show the trade-off between the average E2E delay and the power consumption, 
obtained by increasing the parameter V from right to left, for two different average delay 
thresholds, namely 100 ms and 80 ms, and no probabilistic delay constraint imposed. As we 
can notice, for all curves, the average E2E delay increases as the power consumption 
decreases, until approaching the delay constraint. However, the no RIS case exhibits the worst 
performance in terms of delay-power trade-off, as it achieves higher delays for a fixed power 
consumption. At the same time, the best performance is achieved by the Lorentzian RIS (i.e. 
the proposed method). Moreover, focusing on the highest delay (points on the left side of the 
plot), which is indeed the service requirement, we can notice how the Lorentzian RIS case 
achieves the lowest power consumption, while a slight gain with respect to the no RIS case is 
achieved by the flat RIS. However, the latter does not achieve the considerable gain achieved 
by the proposed method, due to the awareness of the latter on frequency selective channels 
and RIS responses. Finally, in Figure 5-5 (right), we plot the complementary distribution function 
of the delay, also known as survivor function, for the highest value of V, validating the ability of 
our algorithm to guarantee the probabilistic constraint, as shown by the intersection of the 
curves between the maximum allowed delay 𝐷௠௔௫ and the reliability threshold 𝜖. 
 

 

 
 

Figure 5-5: (Left) Average power consumption versus average delay, for different strategies. 
(Right) Survivor function. 

 

Perspective and relation to other WP4 contributions 

The method allows for several generalizations, spanning from multi-user and multi RIS scenario 
to the definition of the specific applications running at the edge server. The method hinges on 
the RIS channel estimation methods developed in WP4. 
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6 Conclusions and outlook 
In the present deliverable, we have reported major research advances and contributions for 
each of the three tasks of WP4 under examination. Specifically, the main contributions and 
takeaways obtained by the RISE-6G consortium can be summarized as follows. 

 

(1) In the context of RIS-aided massive multiple-access cellular networks, we have 
proposed the RISMA protocol, which is shown to outperform the most advanced and 
state of the art competing protocols. 

(2) In the context of RIS-aided air-to-ground networks, we have proposed an optimization 
framework that is shown to be robust and effective against several undesired flight 
effects, and it is capable to offer the desired performance gains. 

(3) In the context of developing RIS-aided schemes that can dynamically operate in different 
frequency bands, we have proposed a novel design of unit cell based on PIN diodes and 
patch antennas. The proposed solution minimizes the impact of mutual coupling, while 
not compromising the beamforming gain. 

(4) In the context of reducing the channel estimation overhead and ease the deployment of 
RISs in wireless networks, we have proposed a novel RIS architecture with integrated 
communication and sensing capabilities, which does not need a dedicated control 
channel. The proposed approach is shown to provide sum-rate performance close to 
state of the art CSI-aware solutions. 

(5) In the context of developing efficient and scalable optimization methods for RIS-aided 
networks, we have introduced algorithms based on the theory of quantum annealing and 
have shown their good performance in muti-user environments. 

(6) In the context of developing physically consistent models for RISs that can be integrated 
into optimization frameworks for communications, we have developed an RIS model 
based on mutually coupled antennas and have shown that it is suitable for optimizing 
multi-user RIS-aided networks as a function of the mutual coupling. Thanks to the 
proposed approach, the mutual coupling can be leveraged to obtain better performance. 

(7) In the context of developing efficient ray-based methods, we have reported a proof-of-
principle analysis of the efficacy of ray-tracing approaches based on DEA. 

(8) In the context of developing efficient and scalable channel estimation methods for RIS-
aided networks, we have developed a novel channel estimation procedure that tracks 
the variations of the wireless channel with minimal channel overhead. 

(9) In the context of finding a good tradeoff between performance and channel estimation 
overhead, we have introduced a new optimization strategy for RIS-aided channels that 
relies on statistical information about the users’ locations rather than on instantaneous 
CSI. It is shown that the proposed approach offers competitive performance as full-CSI 
methods but at reduced overhead. 

(10) In the context of improving multi-user communications in RIS-aided channels 
affected by the presence of blocking objects, we have developed a novel random-access 
protocol and have shown that the deployment of RISs allows for better resolving the 
access collisions and for increasing the average number of successful access attempts. 

(11) In the context of designing efficient and adaptive solutions for RIS-aided networks, 
we have developed algorithms based on the framework of deep reinforcement learning, 
and have developed a trainable decision maker that continuously observes the CSI and 
selects the RIS configurations for system optimization. 
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(12) In the context of reducing the computational requirements at the deployment phase 
of RIS-aided networks, we have proposed a deep neural network approach that is 
capable of predicting the optimal configuration of RISs based on less demanding 
inferences since the training is performed offline. 

(13) In the context of enabling multi-user communications, RISs need to be capable of 
realizing multiple beams simultaneously. We have proposed an efficient reconfiguration 
technique that allows the control over multiple beams independently. The method is 
shown to be easy to implement, effective, and efficient since it only requires phase 
reconfigurations. 

(14) In the context to ease the channel estimation process in RIS-aided networks, we 
have introduced the concept of frequency-mixing RISs with the objective of reducing the 
complexity of channel estimation and enabling the estimation of many RIS-aided 
channels simultaneously. 

(15) In the context of designing dynamic computation offloading schemes with minimum 
energy expenditure and strict delay constraints, we have introduced a dynamic 
computation offloading algorithm that capitalizes on RISs and MEC. 

(16) In the context of designing networks that can jointly support communication and 
computation tasks, we have introduced a dynamic optimization algorithm that is capable 
of overcoming the presence of blocking objects and of offering reliable MEC-based task 
offloading opportunities in the presence of unreliable links. 

(17) In the context of developing RIS-aided networks that can quickly adapt to the 
channel and network conditions, we have introduced an optimization framework based 
on federated learning and have shown its superior performance compared to state of 
the art methods. 

(18) In the context optimizing RISs that account for the frequency-dependent response 
of the RIS elements, we have developed an efficient optimization framework to minimize 
the power spent by the devices for data processing and the transmission to edge 
servers. 

 

In conclusion, the planned objectives for deliverable D4.2 are all achieved as per the Grant 
Agreement. The proposed solutions will be consolidated and generalized towards the 
finalization of deliverable D4.4 
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