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Abstract 

This deliverable provides the final results on the algorithms for RIS-based localisation, map-
ping and sensing performed within the work package 5 “RIS for Enhanced Localisation and 
Sensing” of the RISE-6G project. 
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1 Introduction 

The RISE-6G project is one of the 5G infrastructure Public Private Partnership (5G-PPP) pro-
jects under the European Commission’s Horizon 2020 framework. The focus of the project is to 
design, prototype, and trial radical technological advances based on reconfigurable intelligent 
surfaces (RISs) to forge a new generation of dynamically programmable wireless propagation 
environments. RISs will both enable and boost connectivity, localisation, and sensing perfor-
mance, as well as adapt to dynamic requirements on electromagnetic field emissions, energy 
efficiency, and secrecy. 

Within RISE-6G, work package 5 (WP5) considers exploiting RIS for improved localisation, 
sensing and mapping performances. The aim of WP5 is two-fold: (i) to develop localisation-
oriented network architecture for RIS deployment and profile control to optimise the aforemen-
tioned features’ key performance indicators (KPIs); (ii) to develop and evaluate detection and 
estimation algorithms that enable RIS-based localisation and sensing, for localising connected 
wireless devices, building dynamic environments and radio maps, as well as passively sensing 
physical features. 

1.1 Deliverable objectives  

This document provides the final results related to Task 5.2 from WP5 and contains a summary 
of relevant contributions developed within that work package. 

After providing control and architectural building blocks in D5.3 [RISED53] as result of the T5.1, 
hereafter we provide the following research items to enable RIS-empowered networks where 
boosted cm-level environmental awareness is provided even in highly obstructed conditions. In 
particular, this deliverable complementarily builds on top of Deliverable D5.2 [RISED52], which 
already accounted for former and/or initial contributions. Such contributions are hereafter re-
called for the sake of completeness but not necessarily detailed herein, while focusing mostly 
on new material and results. 

Estimation of location-dependent multipath parameters: This item involves the develop-
ment of suitable algorithms for estimating multipath characteristics that vary with location. Such 
characteristics encompass parameters like multipath delays, power levels, departure and arrival 
angles, and Doppler shifts. The approach includes methods that are designed to work with par-
tial or imperfect prior Channel State Information (CSI) for both the end-to-end and side RIS 
channels, both in the initial setup phase and during steady-state tracking. Furthermore, ad-
vanced beam-training strategies are explored, particularly those leveraging prior mobile location 
information. This research item is addressed by set of contributions A, as listed in Section 3.2. 

Estimation of active UEs and passive objects: This item focuses on identifying and locating 
active Users Equipment (UEs) and passive objects in a RIS-empowered communication envi-
ronment (Smart Radio Environment). One set of methods leverages the location-dependent 
channel parameters and radio metrics obtained through the techniques mentioned earlier. An-
other set aims to directly perform positioning without intermediate channel estimation steps by 
analysing the received signals. This comprehensive approach allows for a versatile and efficient 
localisation process. All proposals are listed as set of contributions B, as listed in Section 3.3. 

RIS-enabled SLAM: In this item, the objective is to develop algorithms with low computational 
complexity that can simultaneously solve two fundamental challenges: simultaneous Localiza-
tion and Mapping (SLAM) and opportunistic (and integrated) sensing. This is accomplished by 
relying on RIS-enabled communication links connecting the Base Station (BS) and UEs. These 
solutions are designed to deliver high nominal accuracy even in the presence of generalized 
Non Line of Sight (NLoS) conditions, while also mitigating multipath interference introduced by 
RISs. List of such contributions is marked as set of contributions C in Section 3.4. 

Spectrum sensing, Radio Frequency (RF) mapping and fingerprinting localisation: This 
item involves conducting wireless activity sensing with extremely high resolution, down to the 
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centimetre-level. Additionally, it enables a technique known as wireless fingerprinting localisa-
tion (WFL) that utilises existing network infrastructure like WiFi or cellular networks for localisa-
tion, offering an effective and practical means of achieving high-precision localisation without 
the need for extensive additional hardware deployment. This approach has the potential to sig-
nificantly enhance location-based services and applications. Such contributions are listed as set 
of contributions D in Section 3.5. 

Algorithms and techniques here presented serve as an input to WP7, where a subset of meth-
ods will be implemented and used in proof-of-concept validations relying on real hardware as 
further detailed in Section 4. 

1.2 Deliverable structure 

The deliverable is structured as follows. 

Section 2 provides the foundations of localisation and sensing techniques against conventional 
approaches where RISs are not in place. Section 3 focuses on the proposed algorithms to esti-
mate localisation and sensing features. In particular, four different sets of contributions are pro-
vided: i) contributions on multi-mode parameter estimation, ii) algorithms on UE location esti-
mation, iii) passive object detection techniques and iv) overview of spectrum sensing, RF map-
ping and fingerprinting empowered by AI. Section 4 sheds the light on the interaction with in-lab 
and on-field demonstrations expected to be detailed and published within the Deliverable 7.3 
(WP7). Lastly, Section 5 draws concluding remarks of the document. 
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2 Localisation and Sensing 

The purpose of this section is to provide an overview of the principles of radio localisation and 
sensing methods by shedding the light on the ad-hoc use of reconfigurable intelligent surfaces 
(RISs) as a mean to provide opportunistic boosted cm-level environmental awareness, includ-
ing joint mobile position, mapping and sensing functionalities. 
 
Architectural details and corresponding control mechanisms are more deeply discussed in de-
liverable D5.1 [RISED51] and D5.3 [RISED53]. 

2.1 Foundations of localisation  

In the context of radio systems, localisation (synonym: positioning) is the process of determining 
the 2D or 3D location of a connected device (UE), based on uplink (UL) or downlink (DL) meas-
urements with respect to several BSs [PRL+18]. The measurements are performed based on 
the reception of dedicated pilot signals and can be of the forms described in Table 2-1. Observe 
that a combination of angle and delay measurements can be used for UE localisation and that 
different measurement combinations put different requirements on both the number of BSs as 
well as on their mutual synchronization [KDA+22]. For this latter reason, pure Time-of-Arrival 
(ToA) measurements with a UE synchronized to a BS is impractical in real scenarios, since 
even small synchronization errors lead to large localisation errors (e.g., 10 ns clock error corre-
sponds to 3 meters error). Examples of two different measurement settings for localisation are 
shown in Figure 2-1. 

Table 2-1 Localisation measurements and requirements for 3D positioning. 

Measurement UL or DL Number of 
BSs 
needed 

Comment 

Time-of-arrival (ToA) of the 
first path 

Either 3 BSs should be synchronized with 
the UE 

Time-difference-of-arrival 
(TDoA), derived from several 
ToA measurements 

Either 4 BSs should be mutually synchro-
nized 

Round-trip-time (RTT), de-
rived from several ToA meas-
urements 

Both 3 No synchronization needed 

Angle-of-arrival (AoA) UL 2 Requires planar arrays at each 
BS 

Angle-of-departure (AoD) DL 2 Requires planar arrays at each 
BS 

TDoA+UL-AoA UL 2 BSs should be mutually synchro-
nized 

RTT+ UL-AoA Both 1 No synchronization needed 
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Figure 2-1. Example of RTT-based localisation (left), constraining the UE on the intersection of 
circles (2D) or spheres (3D). On the right, an example of localisation based on DL-AoD measure-

ments, constraining the user within a sector of each BS. 

The pilots used for localisation are tailored in time, frequency, and space. In time-frequency, so-
called comb signals are used, which occupy the entire signal bandwidth while allowing orthog-
onality across BSs [3GPP10]. In space, the time-frequency signals are repeated for different 
directional beams at the BS, while providing angle measurements (AoA in UL or AoD in DL). 
The quality of the ToA and AoA/AoD measurements depends on several factors [WLW+18]: 

 Bandwidth: the amount of available bandwidth is directly related to delay resolution and 
thus to multipath suppression (in particular, two paths can be resolved if their delay dif-
ference is at least 1 over the bandwidth). If strong signal paths are present, say, 10 
meters after the direct path, then a bandwidth of around 30 MHz is needed to resolve 
this secondary path. For that reason, a large bandwidth is important for accurate locali-
sation in cluttered environments.  

 Transmission power: the accuracy of delay and angle measurements depends on the 
received signal-to-noise ratio (SNR), which is itself proportional to the transmission 
power. Hence, higher transmit powers lead to more accurate localisation, provided mul-
tipath can be resolved. Since localisation depends on pilot signals, an increase in SNR 
can also be achieved through longer transmission times.  

 Number of antennas: similar to bandwidth being related to delay resolution, so is the 
number of antennas proportional to angle resolution (the relation for a linear array is that 
two paths with angle difference (in radians) beyond 2/(number of antennas) can be re-
solved). Hence, a larger array of half-wavelength spaced elements leads to improved 
angular resolution, which can be traded off against delay resolution.  

 Signal processing and hardware limitation: depending on the computational capacity 
and knowledge regarding the utilised beams, the delay and angle estimation perfor-
mance can be improved. Moreover, hardware and calibration errors (e.g., synchronisa-
tion errors) significantly affect localisation performance, leading possibly to a significant 
gap between theory and practice.  

2.2 Foundations of sensing 

In contrast to localisation, 3GPP has until now not offered any support for radar-like sensing. 
Such sensing is conventionally broken down as [WSD+21]: 

 Monostatic sensing: a transmitter (Tx) and a receiver (Rx) are co-located and share a 
common clock. The Tx emits a waveform, known to the Rx. The Rx processes the 
backscattered waveform to detect the presence of targets (static or dynamic object), as 
well as their distance, bearing, and velocity. Such type of radar sensing is commonly 
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employed in automotive radar, and requires dedicated waveforms, shaped in time and 
frequency (e.g., frequency modulated continuous wave (FMCW) [LLH+16] [SFS+18]) 
with orthogonality across transmit antennas, to provide a large virtual aperture. FMCW-
type waveforms have a constant envelope, making them hardware-friendly. In the con-
text of communication systems, standard data-bearing signals can be used (e.g., or-
thogonal frequency division multiplexing (OFDM)) [CKA+20]. Monostatic sensing re-
quires a full-duplex receiver.  

 Bistatic sensing: in this mode, Tx and Rx are not co-located and do not share a com-
mon clock. Pilot signals are emitted by the Tx and the backscattered signal is processed 
by the Rx. The lack of synchronization requires a clock reference, which can be offered 
by the direct path between Tx and Rx.  

 Multistatic sensing: this is a generalization of bistatic sensing with several Rx. The 
information for the different Rxs must be fused to provide an overall picture of the de-
tected objects. The larger number of Rxs allows for higher resolution, due to the in-
creased aperture, provided the Rxs are synchronized.  

The discussion related to delay and angle resolution, as well as signal processing and hardware 
limitations from Section 2.1 is still relevant. In terms of power, it is important to note that sensing 
is subject to more severe path loss than localisation, as the signal scatters from objects before 
reaching the Rx.  

2.3 RIS in localisation and sensing 

RISs have potential to improve localisation and sensing performance, when added to conven-
tional deployments [WHD+20]. This is referred to as ‘boosting’. In addition, RIS also have the 
potential to provide location estimates to UEs when conventional deployments fail. This is re-
ferred to as ‘enabling’.  

 

Figure 2-2. Examples of use of RIS in localisation: a new signal path via a RIS and a new refer-
ence by the RIS (left); large RIS provides wavefront curvature for localisation measurements 

(middle); a RIS provides a signal path to avoid signal blockage in monostatic sensing. 

In wireless systems, RISs can boost or enable user localisation by providing the following fea-
tures (see Figure 2-2): 

1. New signal path: The reflected signal from the RIS provides the Rx with an additional 
signal path whose parameters can be estimated and used for localisation. Compared to 
other multipath generated by the scatterers, the path from the RIS is stronger due to the 
multitude of RIS elements and beamforming gain.   

2. New location references: RISs, when used as a part of wireless infrastructure, have a 
fixed location and orientation. Therefore, they provide a location reference that can be 
used to estimate the unknown location of the user. This separates RISs from scatterers 
in the environment as the location of the scatterers are often unknown.  

3. Near-field (NF) measurements: Since the dimensions of RISs are much larger than 
the conventional planar arrays used in Multiple Inputs Multiple Outputs (MIMO) systems, 
and they can be installed close to the user site, it is probable that the user falls within 

blockage
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the near-field of the RIS [DNA+21]. In the near-field, one can also use the phase of the 
received signal to directly estimate the location of the user. 

In Table 2-2, we present some of the scenarios where the user localisation in 3D is possible 
for wireless systems equipped with RISs. Here we only consider single-antenna BSs. 

Table 2-2 RIS Localisation measurements and requirements for 3D positioning. 

Measurement UL or DL # BSs  #RISs Comment 

ToA + AoD Both 0 1 No synchronisation needed 
(only a coarse synchronisation 
between transmitted pilots and 
RIS configurations). 

TDoA + AoD Either 1 1 No synchronisation needed 

AoD Either 1 2 No synchronisation needed 
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3 Estimation algorithms proposals 

3.1 Motivations and challenges 

As defined and detailed in [RISED52], localisation is carried out through a meticulous two-step 
procedure. The initial step encompasses a channel parameter estimation routine, which serves 
the dual purpose of discerning the quantity of discernible signal paths and extracting critical 
information such as Time of Arrival (ToA), Angle of Arrival (AoA), and Angle of Departure (AoD) 
for each of these paths. In the subsequent phase, the Line of Sight (LoS) path is identified and 
selected for localisation purposes. This selection is typically based on criteria like the shortest 
signal delay or the highest channel gain. In contrast, the remaining signal paths are either ex-
cluded from further consideration or utilized to augment the localisation process by contributing 
to the mapping of the target's position. 

There is a large body of literature on such parametric channel estimation, including ESPRIT 
[RHD14], generalized approximate message passing [BSY19], orthogonal matching pursuit 
[SGD+17] and RIMAX/SAGE [TLR04]. Note that channel parameter estimation is distinct from 
(unstructured) channel estimation [BG06], which aim to determine the complete channel matrix 
or vector, based on pilot transmissions. This unstructured channel estimate is usually an input 
for parametric channel estimation. Unstructured channel estimation is used in the context of 
localisation for fingerprinting. Therefore, the estimated path parameters should be accompanied 
with associated uncertainties, prior to performing localisation.  

Hereafter, we list the set of contributions highlighting (in italic font in Table 3-1, Table 3-2, Table 
3-3 and Table 3-4) only the changes with the respect to the previously introduced contributions, 
as per D5.2 [RISED52]. These contributions are collected in the following sets: 

 Set A: 9 contributions related to channel parameter estimation (Section 3.2).  

 Set B: 9 contributions related to active UE location estimation (Section 3.3).  

 Set C: 5 contributions related to SLAM and passive object detection (Section 3.4).  

 Set D: 4 contributions related to spectrum sensing, RF mapping and fingerprinting (Sec-
tion 3.5). 

 

3.2 Set of contributions #A 

Table 3-1 An overview of parameter estimation contributions 

Architecture Cont. #A-1:  Far-
field ToA and 
AoD estimation 
of a signal re-
flected by a RIS 

Cont. #A-2: Far-
field ToA and 
AoD estimation 
in full-duplex of 
a signal reflected 
by a RIS 

Cont. #A-3: 
Near-field ToA 
and AoD esti-
mation of a sig-
nal reflected 
by a RIS 

Cont. #A-4: AoA 
estimation at a 
sensing RIS 

Cont. #A-5: RIS-
enabled ve-
olcity estima-
tion in near-
field 

Nr BS 1 0 1 0 1 

Nr RIS Multiple 1 1 1 1 

Nr UEs Multiple 1 1 1 1 

UE Mobility Stationary Stationary Stationary Stationary Mobile 

RIS Type Reflective Reflective Reflective Sensing Reflective 

Setup      

Uplink/Downlink Downlink Uplink Downlink Uplink Downlink 

Indoor/out-
door/UAV 

Outdoor Outdoor Indoor and out-
door 

Indoor and out-
door 

Indoor/outdoor 

Frequency Band 30 GHz 28 GHz 28 GHz 30 GHz 28 GHz or sub-6 
GHz  

Narrowband/wide-
band 

Wideband Wideband Narrowband Narrowband Narrowband 

Near field/far field Far field Far field Near field both Near field 
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LoS/NLoS (BS-
RIS-UE) 

LoS (Tx-Rx) and 
NLoS (Tx-RIS-Rx) 

LoS (UE-RIS-UE) NLoS RIS-UE  NLoS 

Imperfections or 
other hardware 
considerations 

- - Phase-depend-
ent RIS ampli-
tude variations 

- Single antenna 
BS and UE 

Measurement type ToA and AoD ToA and AoD ToA and AoD AoA ToA, AoD, chan-
nel gain (inter-
mediary/approxi-
mate) 

RIS configuration 
strategy 

Random profile Directional profile Random profile DFT or Random Random, direc-
tional and ex-
tended to optimal 

Who collects 
measurements 

Rx UE UE RIS BS 

Synchronisation Unsynchronized - No No Unsynchronized 

 

Architecture Cont. #A-6: Channel 
parameter estimation 
for joint RIS calibra-
tion and user posi-
tioning (channel esti-
mation in Cont. #B-9 

Cont. #A-7: Channel 
parameter estimation 
for Multi-RIS-Enabled 
3D Sidelink Position-
ing (channel estima-
tion in Cont. #B-10) 

Cont. #A-8: 3D Local-
isation with distrib-
uted passive RISs 
and blocked BS ac-
cess 

Cont. #A-9: Localisa-
tion via a single par-
tially connected re-
ceiving RIS 

Nr BS 1 0 1 0 

Nr RIS 1 Multiple Multiple 1 

Nr UEs 1 Multiple 1 1 

UE Mobility Stationary Stationary Stationary Stationary 

RIS Type Active Reflective Reflective Receiving 

Setup     

Uplink/Downlink UL DL UL UL 

Indoor/out-
door/UAV 

Outdoor/UAV 

 

Outdoor Outdoor Indoor/Outdoor 

Frequency Band 28 GHz 28/60 GHz 28 GHz 28 GHz 

Narrowband/wide-
band 

WB WB Narrowband Narrowband 

Near field/far field FF FF Far field Far field 

LoS/NLoS (BS-
RIS-UE) 

LoS and NLoS LoS RIS-UE and LoS 
UE-UE 

NLoS LoS 

Imperfections or 
other hardware 
considerations 

- - - - 

Measurement type ToA, AoA, Spatial fre-
quency 

AoD, AoA, spatial fre-
quency 

AoA AoA 

RIS configuration 
strategy 

Random Random, directional, 
and derivative code-
book 

Random Random, Directional 

Who collects 
measurements 

BS UE BS RIS 

Synchronisation Unsynchronized Unsynchronized Unsynchronised Unsynchronised 
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#A-1: Far-field ToA and AoD estimation of a signal reflected by a RIS 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

 

#A-2: Far-field ToA and AoD estimation in full-duplex of a signal reflected by a RIS 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

 

#A-3: Near-field ToA and AoD estimation of a signal reflected by a RIS 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

 

#A-4: AoA estimation at a sensing RIS 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

 

#A-5: RIS-enabled velocity estimation in near-field 

Motivation and context 

A few contributions from the recent literature have addressed the impact of mobility on RIS-
aided UE state estimation. For instance, in [KKS+22] the authors performed snapshot position 
estimation of a mobile UE under spatial-wideband effects. In [CJY+22], the utilisation of Doppler 
information was introduced to enable a mobile UE localisation. Then shifting away from snap-
shot estimation, in [GGD+21], a UE transmitting a narrowband signal is tracked through filtering 
(i.e., including 3D velocity as estimated variable, besides 3D position), while exploiting phase 
and amplitude observations accounting for the curvature-of-arrival of the impinging wavefront 
at a RIS in receiving mode in the Fresnel region (w.r.t. the UE). Moreover, in [AS22] the authors 
present an extended Kalman filter positioning and tracking algorithm to localise users with the 
aid of RIS while [PGA+23] develops a joint RISs reflection coefficients and BS precoder optimi-
zation problem in a single-mobile UE multi-RIS MIMO scenario in the NF domain and estimates 
the UE’s trajectory. And finally, in [XYS22], velocity is estimated in FF LoS conditions via a 
reflective RIS, while relying on both direct and RIS-reflected paths. 

In contrast with the previous contributions, one aim here is simply to exploit the small-scale 
Doppler effects induced by UE mobility (i.e., over the short time duration of a sequence of DL 
pilot signals) at the different elements of a large reflective RIS to enable “snapshot” velocity 
estimation, given a known prior UE location and a coarse initial guess. Regarding this estimation 
problem, the theoretical velocity error bound (VEB) was initially derived in [RISED52] for bench-
mark purposes. 
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Figure 3-1. Considered scenario and problem geometry for RIS-aided position-based 
user velocity estimation over DL pilots transmission in NF NLoS conditions. 

 

Methodology 

To handle the previous RIS-aided position-based velocity estimation problem, a dedicated iter-
ative refinement routine has been proposed, as follows (please refer to Figure 3-1).  

 Applying linearisation and small angle approximations, this procedure first relies on an 
expression approximating the response of the reflective RIS under UE mobility in NF, as 
a function of a residual velocity term that accounts for the latest velocity estimation error 
(typically, from a previous estimation step).  

 Then, this approximated RIS response is plugged into a simplified formulation of the 
likelihood maximization problem, which is further solved with respect to both the velocity 
residual and channel gain of the reflected path, by alternating updates over the two op-
timization variables thanks to two simple closed-form solutions. 

Results and discussion 

The performance of the proposed position-based velocity estimation approach was evaluated 
through Monte-Carlo simulations and compared with the corresponding theoretical VEB from 
[RISED52], while illustrating the impact of key parameters such as the RIS-UE distance in light 
of geometric NF conditions, or the actual velocity module.  

Results in Figure 3-2 show that the algorithm of estimating the UE’s 3D velocity knowing the 
position attains the theoretical bounds at close and far distances. We also applied a global 
refinement routine as a precaution to further enhance the estimation in case the algorithm fails. 
As expected, it is hence noticed that both the VEB and estimation performance degrade with 
larger RIS-UE distances. 
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Figure 3-2. Root Mean Square Error (RMSE) of velocity estimation for a known UE position and v 
= 1 m/s, along with the corresponding VEB, versus RIS-UE distance. 

 

Perspective and relation to other WP5 contributions 

The RIS-aided position-based velocity estimation approach described above can be ex-
tended/generalized into a joint velocity-position snapshot estimation scheme with no prior infor-
mation (i.e., performing blind 6D state estimation), while still benefiting from the same small-
scale Doppler effects induced with respect to the RIS elements in NF (See contribution #B-6 
below).  
 

#A-6: Channel parameter estimation for joint RIS calibration and user positioning 

Motivation and context 

Recent studies have shown the potential of RIS-assisted localisation systems in various sce-
narios, e.g., localisation under user mobility [KKS+22], joint localisation and synchronization 
[FKS+22], simultaneous indoor and outdoor localisation [HFA22], received-signal-strength 
based localisation [ZZD+21], and so on. Although promising results on RIS-assisted localisation 
are shown in the literature, most of the existing research works regard RIS as an anchor with 
known position and orientation, which is not realistic in some application scenarios such as fixed 
RISs with calibration error and mobile RISs. As a matter of fact, calibration errors in the RIS 
placement and geometric layout are unavoidable in practice, making RIS calibration a necessity 
for performing a high-precision localisation. In this work, we consider a far-field joint RIS cali-
bration and user positioning (JrCUP) scenario under an uplink SIMO system, as shown in Figure 
3-3. More specifically, a UE is sending positioning pilot signals to a BS through the LoS path 
and RIS path, and we want to estimate the 3D position and 1D orientation of a RIS (𝐩R, 𝑜3), 3D 

position of the UE (𝐩U), and the clock offset between the UE and the BS (Δ).  
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Figure 3-3. Illustration of an uplink SIMO JrCUP scenario, where the states of the UE and RIS are 
unknown. The RIS is deployed on a drone with gravity sensors, where the RIS is always perpen-

dicular to the ground; hence, only one orientation angle needs to be estimated. 

Methodology 

To obtain these state parameters, channel parameter estimation is performed using tensor ES-

PRIT to extract the delay and AoA of the UE-BS channel (𝜏L, 𝜽L), delay and AoA of the UE-RIS-
BS channel (𝜏R, 𝜽R), as well as two spatial frequency parameters (𝝑 = [𝜗2, 𝜗3]) consisting of the 

AoA ( 𝜙𝐴
𝑎𝑧 , 𝜙𝐴

𝑒𝑙 ) and AoD ( 𝜙𝐷
𝑎𝑧 , 𝜙𝐷

𝑒𝑙 ) information at the RIS ( 𝜗2 = sin(𝜙𝐴
𝑎𝑧) cos(𝜙𝐴

𝑒𝑙) +

sin(𝜙𝐴
𝑎𝑧)cos(𝜙𝐴

𝑒𝑙), 𝜗3 = sin(𝜙𝐴
𝑒𝑙)+cos(𝜙𝐷

𝑒𝑙)).   

For delay estimation, element-space tensor ESPRIT is adopted [HRD08]. Considering the hy-
brid structure of BS (i.e., the number of radio frequency chains is less than the number of an-
tennas) and the passive property of the RIS (i.e., operating like an analog array), beamspace 
tensor ESPRIT is adopted [WSY20]. More details can be found in [ZCB+23], resulting in coarse 
channel parameters. After that, channel parameters are refined via least squares (LS).  

Results and discussion 

Figure 3-4 shows the evaluation of the RMSEs of 𝜽L, 𝜽R, 𝜏L, 𝜏R, and 𝝑 versus the received SNR 
for the tensor-ESPRIT coarse estimation and LS-based refinement. The LS refinement is solved 
using the trust-region method and the number of iterations is set as T = 40. It is observed that 
the RMSEs of coarse estimation possess large gaps to the CRLBs while the proposed refine-
ment significantly reduces the distance to the CRLBs when the received SNR is 10dB or higher. 
Nevertheless, there are still non-negligible gaps between the results of LS refinement (espe-
cially for 𝜽L, 𝜽R, and 𝜏L) and the theoretical bounds, which result from the mismatch between 
the used LS criterion and the actual statistics of the noise. 
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Figure 3-4. The evaluation of RMSE of channel parameters versus received SNR for the tensor-
ESPRIT coarse estimation and LS-based refinement. 

 

Perspective and relation to other WP5 contributions  

In most of the localisation and sensing scenarios, RISs are treated as an anchor with known 
position and orientation. However, the calibration phase is usually neglected. The scenario and 
method proposed in this work provides a practical RIS calibration solution, benefiting other RIS-
aided localisation and sensing works. The channel estimation algorithm using tensor ESPRIT 
can also be implemented in other RIS-involved scenarios. 

 

#A-7: Channel parameter estimation for multi-RIS-enabled 3D sidelink positioning 

Motivation and context 

Positioning is expected to support communication and location-based services in the fifth/sixth 
generation (5G/6G) networks. With the advent of reflective RISs, radio propagation channels 
can be controlled, making high-accuracy positioning and extended service coverage possible. 
However, the passive nature of the RIS requires a signal source such as a BS, which limits the 
positioning service in extreme situations, such as tunnels, dense urban areas, or complicated 
indoor scenarios where 5G/6G BSs are not accessible. In this work, we show that with the 
assistance of (at least) two RISs and sidelink communication between two UEs, the absolute 
positions of these UEs can be estimated in the absence of BSs. In the channel estimation step, 
we adopt orthogonal RIS profiles to extract the spatial frequencies of the RIS channel (e.g., 𝜉ℓ =
sin(𝜙𝐴,ℓ) cos(𝜃𝐴,ℓ) +sin(𝜙𝐷,ℓ) cos(𝜃𝐷,ℓ), 𝜁ℓ = sin(𝜃𝐴,ℓ) cos(𝜃𝐷,ℓ)), and delays of the LOS chan-

nel (𝜏0) and RIS channel (e.g., 𝜏ℓ for the ℓth). 

Methodology 

We assume the RIS profiles (or codebooks) are always known at the UE side via RIS-aided 
positioning protocols. To assist channel parameter estimation, we adopt time-orthogonal RIS 
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profiles to differentiate independent RIS paths from the others [KKS+22]. After coherent com-
bining across different subcarriers, 1D Fast Fourier Transform (FFT) can be adopted to extract 
the delay information of each separated path. Then a 2D search (e.g., 2D FFT) can be per-
formed based on the estimated delay to extract the spatial frequency of each RIS path. Unlike 
the channel parameter estimation using ESPRIT where the rotation invariant property needs to 
be satisfied, time-orthogonal RIS profiles provides flexibilities in designing RIS profiles. 

 

 

Figure 3-5. Illustration of multi-RIS-enabled 3D sidelink positioning. With the help of multiple (at 
least two) RIS anchors, the positions of both UEs (with respect to the global coordinate system) 
and the clock offset between them can be estimated through a one-way sidelink communication. 

 

Results and discussion 

We evaluate the performance of the channel estimator with a single scattering point (SP) located 

at [0, 2, 3]Tm (providing M = 3 MPCs with radar cross section coefficient of 𝑐RCS = 0.5𝑚2. The 
result of channel parameter estimation is shown in Figure 3-6. It can be seen that the coarse 
estimations saturate to a certain level with the increased transmit power. However, when refine-
ment processes are applied, the Cramer Rao Lower Bounds (CRLBs) of channel parameters 
can be attained when the transmit power is higher than 16 dBm. Note that when transmit power 
is low, coarse position results may perform better due to the constrained searching area, while 
the refinement process does not have such constraints (usually treated as no-information re-
gions). 

 

Figure 3-6. RMSE of the channel parameter estimation results vs. derived CRBs. 
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Perspective and relation to other WP5 contributions  

The FFT-based channel estimation method provides a low-complexity estimation solution. How-
ever, to maintain the orthogonality for multiple RISs, coordination overhead should be consid-
ered, especially in the mobile scenario where coherence time is shorter. 
 

#A-8: 3D localisation with distributed passive RISs and blocked BS access 

Motivation and context 

3D localisation is impossible to be achieved by only a single RIS in a considered system, based 
on angular parameters’ measurements, such as AoAs and/or AoDs. Although promising multi-
RIS-assisted 3D localisation methods are proposed in the literature [AVW22], the necessary 
backhaul links to connect all RISs to a fusion centre, lead to increased orchestration complexity 
and deployment cost. Differently from such approaches, to guarantee high accuracy 3D user 
localisation with a single multi-antenna BS, in this contribution, detailed in [HFW+23], it is pro-
posed to design a two-stage method leveraging the multi-reflection wireless environment. In 
particular, in the first stage, an off-grid compressive sensing approach is deployed, to achieve 
the AoAs estimation associated with each RIS, followed by the second stage which is based on 
a maximum likelihood location estimation initialized with a least-squares line intersection tech-
nique. During both stages, none of the RISs possesses any radio-frequency chain nor baseband 
processing capability, leading to almost zero power consumption. 

Methodology 

The proposed system consists of one multi-antenna BS, multiple RISs and a single-antenna 

UE. At a considered timeslot 𝑡, the UE transmits the sounding reference signal 𝑠, with constant 
transmit power, which reaches the BS via reflections from all RISs, since the direct link (between 
the BS and UE) is assumed to be blocked. Assuming that the BS knows a priori the positions 
of all RISs, the signal received at the BS from the 𝑚-th RIS can be separated by applying a 
zero-forcing (ZF) filtering technique. This process leads to a sparsity-one signal recovery prob-
lem, which can be in turn solved by formulating an atomic norm minimisation problem. Then, 
this process is followed by the least-squares principle for mapping the AoA estimates to the 3D 
position of the UE.  

Results and discussion 

To evaluate the performance of the proposed 3D localisation scheme, we study the effect of the 
training overhead, as well as the impact of the numbers of BS antennas and RISs. In Figure 
3-7, it can be observed that, as the transmit power of the UE increases, the positioning accuracy 
improves in terms of the RMSE, approaching the theoretical derived CRLB. It is also evident 
that increasing the training overhead from 𝑇 = 32 to 40, slightly enhances the achievable per-
formance. Compared to [AVW22], an additional signal propagation hop is encountered. As a 
result, more transmit power is required to achieve similar performance. On the other hand, by 
reducing the BS-RIS distance, we can minimise the performance gap between the two systems, 
without the need of backhaul links and a fusion centre.  

In Figure 3-8, it is shown that the number of BS antennas (𝑁) has a significant impact on the 
design of ZF combining matrix, which in turn affects the proposed localisation performance. As 
illustrated, increasing 𝑁 improves both metrics and speeds up their performance convergence. 
From the CRLB perspective, it is obvious that a gain can be seen by this RIS addition in the 
setup. However, from the algorithmic point of view, a performance gain is achieved only with a 
large-sized BS, (e.g., for 𝑁 = 100), due to the increased spatial filtering capability at reception.  
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Figure 3-7. The effect of training overhead of T on the performance of the proposed 3D localisa-
tion system. 

 

Figure 3-8. The effect of the number of BS antennas and that of RISs on the performance of the 
proposed 3D localisation system. 

 

Perspective and relation to other WP5 contributions  

This contribution is designed to combat the BS-UE blockage problem, which is a prominent 
deployment scenario for RISs. The algorithmic treatment, involving compressed sensing tools 
and least-squares techniques, is similar to other algorithmic approaches presented in this WP, 
although it is altered to fit the multi-RIS setting. Its control and signalling aspects have been 
discussed under contribution #C7 of D5.3 [RISED53]. 

 

#A-9: Localisation via a single partially connected receiving RIS 

Motivation and context 

According to the literature, it has been shown that a single mmWave BS operating over a very 
large bandwidth and equipped with a large number of antennas, can also achieve positioning 
with high accuracy. Such a BS should rely on both temporal and angular channel parameters 
to achieve the desired goal, at the cost of utilizing large-sized antenna arrays, as well as large 
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communications signal bandwidths. In [AVW22], it has been shown that multiple spatially dis-
tributed RISs are capable to collect measurements that can be helpful to perform highly accurate 
3D localisation, although at a large deployment cost and implementation complexity. In this 
contribution, capitalizing on the localisation framework of [AVW22], a partially-connected receiv-
ing RIS (R-RIS) hardware architecture is proposed comprising a few co-located single-RX-RF 
RIS subarrays, targeting at 3D localisation in a computationally autonomous manner, that is, 
without the intervention of any BS or access point (AP).  

Methodology 

We consider that the R-RIS consists of single-RX-RF UPAs of meta-atoms placed parallel to 
the 𝑦𝑧plane. In addition, the outputs of the reception RF chains of all subarrays feed a base-
band AoA estimation and localisation module, which is based on the extraction of the impinging 
signal’s angular parameters with respect to each subarray. Capitalizing on theoretical analyses 
related to the CRLB on the channel parameters estimation, the effect of NLoS paths on LoS 
angular estimation, as well as the CRLB on 3D localisation, we design the following practical 
localisation scheme. By first resorting to the atomic norm minimisation (ANM) and subspace-
based root MUSIC algorithms to estimate the angular parameters for the LoS path at each R-
RIS subarray, we then apply the Least Squares principle to map the angular estimates to the 
3D localisation of the Mobile Stations (MS).  

Results and discussion 

We first evaluate the performance of the proposed scheme in terms of the RMSE (in meters) as 
a function of the transmit power 𝑃, where different training overheads values are considered. In 
Figure 3-9, it is shown that, as expected, the higher the training overhead is, the better becomes 
the estimation performance. When the transmit power is equal to 20 dBm, ANM with 𝐾 = 64 the 
accuracy is around 1 cm. Hence, based on the fact that LoS information can bring cm-level 
accuracy, there is no need to exploit NLoS path information, which would increase the compu-
tational complexity of the proposed algorithm. It is also illustrated that the performance of the 
introduced orthogonal matching pursuit (OMP) saturates to 7 cm as 𝑃 increases due to inevita-
ble quantisation error, since an extremely large dictionary has been used for the proposed al-
gorithm, as detailed in [HFV+23]. Moreover, it is also depicted that the performance gap be-
tween the theoretical and practical results stays constant within the SNR range under investi-
gation.  

In Figure 3-10, different inter R-RIS subarray spacings are considered, in order to evaluate the 
impact on the 3D localisation accuracy. Assuming specific centroid coordinates of the whole R-
RIS, and changing the vertical and horizontal distances of the R-RIS subarrays (as illustrated 
in the legend of the mentioned figure), it can be inferred that the case where 𝑑𝑉 = 𝑑𝐻 = 1.2, can 

achieve around 2 cm accuracy, while when 𝑑𝑉 = 𝑑𝐻 = 0.2 only 6 cm accuracy can be achieved. 



 

Document: H2020-ICT-52/RISE-6G/D5.4  

Date: 29/09/2023 Security: Public 

Status: Final Version: 1.0 

 

RISE-6G Public 29 
 

Therefore, we can reach the conclusion that larger spacing in general can provide better per-
formance, but at a sacrifice of a larger space for installing the overall R-RIS structure. 

 

Figure 3-9. RMSE performance of the proposed 3D localisation system with different training 
overhead values. 

 

 

Figure 3-10. Effect of R-RIS partitioning on the RMSE performance from both the theoretical and 
practical perspectives. 

 

Perspective and relation to other WP5 contributions  

This contribution considers the algorithmic aspects of a minimal monostatic RIS localisation 
architecture, whose control and signalling have been discussed under contribution #C8 of D5.3 
[RISED53]. The multiple RF chains endowed to the surface allow for typical sparse signal re-
covery and matching algorithms to be applied to decompose the LOS path, as normally done 
by other localisation contributions of this deliverable. 
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3.3 Set of contributions #B 

Table 3-2 An overview of active UE location estimation contributions 

Architecture Cont. #B-1: Semi-
passive Localisa-
tion of Multiple RIS 
Enabled Users 

Cont. #B-2: RIS-
Enabled SISO Lo-
calisation under 
User Mobility and 
Spatial-Wideband 
Effects 

Cont. #B-3: RIS-
Enabled Self-Lo-
calisation: Lever-
aging Controllable 
Reflections with 
Zero Access 
Points 

Cont. #B-4: RIS-
aided Near-Field 
Localisation under 
Phase-Dependent 
Amplitude Varia-
tions 

Cont. #B-5: Locali-
sation via multiple 
sensing reconfigu-
rable intelligent 
surfaces, without 
any BSs 

Nr BS 1 1 0 1 0 

Nr RIS Multiple 1 1 1 At least 2 

Nr UEs Multiple 1 1 1 1 

UE Mobility Stationary Mobile Stationary Stationary Stationary 

RIS Type Reflective Reflective Reflective Reflective Sensing 

Localisation 
functionality 
placement 

At Rx At UE At UE At UE At RIS 

Setup      

Uplink/Down-
link 

DL DL UL DL UL 

Indoor/out-
door/UAV 

Outdoor Outdoor Outdoor Indoor/outdoor Indoor/outdoor 

Frequency 
Band 

30 GHz 28 GHz 28 GHz 28 GHz 30 GHz 

Narrow-
band/wide-
band 

Wideband Wdeband Wideband NB NB 

Near field/far 
field 

Far field Far field Far field NF Both 

LOS/NLOS 
(BS-RIS-UE) 

LOS (Tx-Rx) and 
NLOS (Tx-RIS-Rx) 

LOS (BS-UE) and 
NLOS (BS-RIS-UE) 

LOS (UE-RIS-UE) NLOS RIS- UE LOS/NLOS 

Imperfec-
tions or other 
hardware 
considera-
tions 

- - - Phase-dependent 
RIS amplitude varia-
tions 

- 

Measure-
ment type 

ToA and AoD ToA and AoD ToA and AoD ToA and AoD AoA 

RIS configu-
ration strat-
egy 

Random Directional Directional Random Random or DFT 

Who collects 
measure-
ments 

Rx UE UE UE RIS 

Synchronisa-
tion 

Unsynchronized Unsynchronized No No No 

Metric opti-
mised 

No optimization No optimization No optimization No optimization No optimization 

 

Architec-
ture 

Cont. #B-6: RIS-Enabled 
Joint Mobile User Loca-
tion and Velocity Esti-
mation in Near-Field 

Cont. #B-7: RIS-aided 
Localization under Pixel 
Failures 

Cont. #B-8: Joint RIS 
Calibration and User Po-
sitioning 

Cont. #B-9: Multi-RIS-
Enabled 3D Sidelink Po-
sitioning  

Nr BS 1 1 1 0 

Nr RIS 1 1 1 Multiple 

Nr UEs 1 1 1 Multiple 

UE Mobility mobile Stationary Stationary Stationary 

RIS Type reflective Reflective Active Reflective 

Localisation 
functionality 
placement 

At UE At UE At BS At UE 

Setup     

Up-
link/Downlink 

DL DL UL DL 

Indoor/out-
door/UAV 

Indoor/outdoor Indoor/Outdoor Outdoor/UAV Outdoor 

Frequency 
Band 

28 GHz or sub-6 GHz  28 GHz 28 GHz 28 GHz 
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Narrow-
band/wide-
band 

NB NB WB WB 

Near field/far 
field 

NF NF FF FF 

LOS/NLOS 
(BS-RIS-UE) 

NLOS NLOS (BS-RIS-UE) LOS and NLOS LOS (TxUE-RxUE) and 
NLOS (TxUE-RIS-RxUE) 

Imperfec-
tions or other 
hardware 
considera-
tions 

Single antenna BS and 
UE 

Pixel failures at RIS - - 

Measure-
ment type 

ToA, AoD, channel gain, 
velocity (intermediary/ap-
proximate) 

Wavefront curvature ToA, AoA, Spatial fre-
quency 

AoD, AoA, Spatial fre-
quency 

RIS configu-
ration strat-
egy 

Random, directional and 
extended to optimal 

Random Random Random, directional, and 
derivative codebook 

Who collects 
measure-
ments 

BS UE BS UE 

Synchronisa-
tion 

unsynchronized Unsynchronized Unsynchronized Unsynchronized 

Metric opti-
mised 

No optimization  No optimization No optimization No optimization 

 

#B-1: Semi-passive localisation of multiple RIS enabled users 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

  

#B-2: RIS-enabled SISO localisation under user mobility and spatial-wideband effects 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

 

#B-3: RIS-enabled self-localisation: leveraging controllable reflections with zero access 
points 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

  

#B-4: RIS-aided near-field localisation under phase-dependent amplitude variations 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

  

#B-5: Localisation via multiple sensing reconfigurable intelligent surfaces, without any 
BSs 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

 

#B-6: RIS-enabled joint mobile user location and velocity estimation in near-field 

Motivation and context 

In this contribution, the position and velocity of a single-antenna UE are jointly estimated (i.e., 
performing 6D state estimation) out of DL narrowband pilot transmissions from a single-antenna 
BS, while still the direct path between the BS and UE is blocked (i.e., assuming NLoS). Just like 
in contribution #A-5, the main idea is to benefit from the small-scale Doppler effects induced by 
mobility at the multiple elements of a large reflective RIS in the NF propagation regime. In this 
scenario again, localisation is made feasible by the RIS-reflected path assuming NF propaga-
tion, just like in [RDK+21]. To some extent, this approach can hence be seen as a dual –yet 
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extended or generalized- variant of the position-based velocity estimation approach described 
above in #A-5. Regarding this new joint position and estimation problem, both the analytical 
position error bound (PEB) and velocity error bound (VEB) were initially derived in [RISED52] 
for benchmark purposes.  

 

Figure 3-11. Considered scenario and problem geometry for RIS-aided joint user position and 
velocity estimation over DL pilots transmission in NF NLoS conditions. 

 

Methodology 

A practical initialization procedure based on 2 simple grid searches (GS), over the RIS AoD and 
BS-RIS-UE range domains for a simplified closed-form channel gain model was first proposed. 
This initialisation provides coarse estimates for both the 3D UE position and the complex chan-
nel gain of the RIS-reflected path, while relying on static UE assumption and FF approximation.  
The corresponding results are then injected into a generic and complete NF RIS response for-
mulation for further corrections, while still assuming a null velocity. Then, a closed-form (CF) 
refinement algorithm fed by the previous initialization steps is applied, which iterates alterna-
tively over both position-based velocity estimate and velocity-based position estimate, while 
performing local linearization steps and compensating for the estimation residuals caused by 
mobility at each iteration.  
Finally, an optional Quasi-Newton refinement routine is performed to complete the estimation 
process and further improve position, velocity and channel gain estimates through standard 
Likelihood maximization. This extra refinement step can be activated or inhibited on demand, 
typically depending on the RIS-UE distance, as its actual gain (beyond the previous algorithmic 
step) depends on the experienced FF/NF regime.  

Results and discussion 

Just like for #A-5, the performance of the proposed joint estimation approach was evaluated 
through simulations and compared with the two theoretical bounds from [RISED52], as well as 
with other algorithmic variants assuming for instance NF but no velocity at all, while also illus-
trating the impact of the actual RIS-UE distance or velocity module. 

First, in Figure 3-12, we plot the PEB of our problem to assess the feasibility and the perfor-
mance bound on any estimator we would design. Then, the output of our iterative GS routine is 
plotted in solid red. We could see that it is not attaining the PEB neither at NF nor at FF, although 
at short distances it performs worse. This is due to the mismatch caused by the FF approxima-
tion that we try to overcome with the iterative nature of this routine. Clearly, the output of this 



 

Document: H2020-ICT-52/RISE-6G/D5.4  

Date: 29/09/2023 Security: Public 

Status: Final Version: 1.0 

 

RISE-6G Public 33 
 

algorithm is still far from optimal and needs to be refined, but nevertheless we compare it with 
the method proposed in State of the Art [ZKM+21] in NLoS NF scenarios. The latter applies a 
non-iterative GS algorithm that does three 1D searches, i.e., two angular and one range, in 
contrast to our method which applies a 2D angular search (with FF assumption) and then iter-
ates over a linear search to get the range and again the 2D angular search to overcome the NF-
FF mismatch. In comparison, the State of the Art method, with its simplicity, is then shown to 
fail to a larger extent when the UE is mobile. 

 

 

Figure 3-12. UE’s position estimation error versus RIS-UE distance, with the proposed initial grid 
search step, against the State of the Art algorithm [ZKM+21], for v = 1 m/s. 

 

Figure 3-13. UE’s position estimation error versus RIS-UE distance, with the overall algorithm 
proposal (full model), for v = 1m/s. 
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Next, we have implemented our CF velocity-based position refinement routine, which was de-
rived by linearising the position component in the RIS response phase term and then by per-
forming a small angle approximation (SAA). This routine is fed with the output of the GS algo-
rithm (in red) and already, in Figure 3-13, we see a significant improvement (in amber) in the 
estimation algorithm, at least at short distance where the performance touches the PEB. How-
ever, as the UE is moving away from the RIS, we start noticing performance degradation of this 
algorithm, which is an aftermath of the linearization/approximation steps that were needed to 
develop this algorithm. 

 

Figure 3-14. UE’s velocity estimation error versus RIS-UE distance, with the overall algorithm 
proposal (full model), for v = 1m/s. 

Additionally, and as a part of the 6D estimation system, we have plotted in Figure 3-14 the VEB 
(in blue) which acts as the bound for any unbiased velocity estimator alongside the latter (in 
amber) and a global velocity refinement routine (in black - dashed). Our estimator is still labelled 
as “refinement” here because we start the estimation from zero velocity assumption and position 
estimate gained from amber curve in Figure 3-13 and the iteration between both starts until our 
objective function converges. We can see similar performance to the velocity-based position 
estimation algorithm, the estimator being very close to the theoretical bound, i.e., VEB, until far 
distances where the global refinement routine fixes the issue. 

Perspective and relation to other WP5 contributions 

The proposed approach can be combined with both Bayesian filtering (i.e., feeding the filter with 
the previous snapshot position and velocity estimates, as observations) and dynamic RIS con-
trol, thus benefiting from the filtered 6D state estimates (along with their associated estimation 
covariance) to anticipate on the best localisation-optimal RIS configuration at any place and 
time through robust phase design.    
 

#B-7: RIS-aided localization under pixel failures 

Motivation and context 

Certain aspects warrant careful consideration when dealing with practical RISs, which may en-

compass numerous unit elements (or pixels). Among these concerns is the potential occurrence 

of individual element failures, a topic that has also been explored in the array processing litera-

ture. In a standard mmWave setup without an RIS, researchers have studied antenna array 
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diagnosis in [EAH18], where several compressive sensing-based techniques have been pro-

posed to detect faulty antenna elements and analyse the resulting amplitude and phase distor-

tions. Moreover, AoA estimation under element failures has been addressed in [SWS+19].  

Recent investigations have focused on RIS element failures in mmWave communications 

[TCG+20], [SWC+22], [ZHZ22]. In [TCG+20], the authors identified various types of pixel errors 

(e.g., stuck at state, out of state, etc.) and assessed their spatial distribution (independent, clus-

tered, etc.) along with their impact on the radiation pattern through simulation analysis. Similarly, 

in [SWC+22], a failure model was established to define the amplitude and phase shift of faulty 

elements, and they proposed diagnostic methods exploiting the sparsity property of these fail-

ures. Despite substantial research on pixel failures in RIS-aided communications, no study has 

yet addressed the problem of RIS-aided localisation in the presence of pixel failures. This work 

investigates the impact of RIS pixel failures on localisation accuracy in a near-field SISO sce-

nario under LoS blockage and proposes two sparsity-inspired algorithms for joint localisation 

and failure diagnosis (JLFD) to simultaneously estimate user location and detect failing RIS 

elements. 

Methodology 

To model RIS pixel failures, the biased failure model is adopted, where applied RIS phase shifts 
are perturbed by unknown phases and amplitudes (less than 1) in failing elements. Considering 
a near-field SISO downlink scenario under LoS blockage between the BS and the UE, a single 
path (i.e., BS-RIS-UE) is assumed to exist without any uncontrolled multipath. The goal is to 
estimate the UE location while simultaneously detecting pixel failures and estimating the re-
spective failure coefficients (i.e., the failure mask). For this problem, the methodology consists 
of two stages: 

 Localisation performance evaluation in the presence of pixel failures: We first evaluate 
how severe the effect of RIS pixel failures can be on localisation accuracy when the UE 
is unaware of these failures. To this end, we resort to the Miss-specified Cramer Rao Bound 

(MCRB) analysis as a theoretical tool to assess degradation accuracy due to mismatch 
between the true model with failures and the ideal model without failures. The MCRB 
serves as a fundamental theoretical benchmark for evaluating the performance limits of 
conventional localisation algorithms when facing pixel failures.  

 Development of JLFD algorithms to mitigate the impact of failures: Exploiting the sparsity 
of failures, two novel algorithms are proposed to solve the JLFD problem: 

o The JLFD problem is formulated using the hybrid Maximum Likelihood/Maximum 
A Posteriori (ML/MAP) estimation framework, where the UE location is a deter-
ministic unknown, and the failure mask is a random unknown parameter with 
certain statistical distribution (each pixel fails independently with the same failure 
probability). 

o Due to binary failing/functioning variables for each pixel, the resulting optimiza-
tion problem has a combinatorial nature, leading to a computationally intractable 
problem.  

o To tackle this challenge, an l-1 regularization based JLFD algorithm (called l1-
JLFD) is proposed, and an alternating minimization strategy is developed to up-
date failure mask and UE location in an alternating manner. 

o In addition, we propose a successive-JLFD algorithm that solves the hybrid 
ML/MAP optimization problem in an iterative fashion. The successive-JLFD de-
tects pixel failures one-by-one per iteration and estimates the corresponding fail-
ure coefficient while at the same time updating the UE location estimate.  
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Results and discussion 

We investigate the localisation performance under pixel failures by plotting standard CRLB 
(which assumes known failure mask) and another Lower Bound (LB) (obtained from MCRB 
analysis, which provides a lower bound on accuracy when failures are ignored in receiver pro-
cessing). Figure 3-15 shows the localisation RMSE with respect to failure probability and SNR. 
By comparing LB and CRLB curves, it is observed that the gap between LB and CRLB gets 
larger with increasing failure probability due to increasing mismatch between the true and ideal 
models. We see that severe degradations in accuracy can occur, especially at high SNRs and 
for large probability of failures (greater than 1%), when the UE performs conventional pro-
cessing by ignoring the existence of failures. Therefore, RIS-aided localisation can be highly 
sensitive to pixel failures. This mainly results from the fact that localisation in the considered 
SISO scenario with LoS blockage relies purely on location-dependent phase shifts across the 
RIS, which, however, are impaired by unknown complex failure coefficients in failing pixels. 

 

Figure 3-15. Theoretical limits on localisation RMSE under pixel failures with respect to failure 
probability and SNR. 

 

We also explore the performance of the proposed JLFD algorithms along with a failure-agnostic 
benchmark method which performs standard ML location estimation without taking into account 
the presence of failures. Figure 3-16 shows the RMSE results with respect to SNR for two dif-
ferent values of probability of failure. It is observed that the benchmark reaches a plateau in 
localisation performance after a certain SNR, attaining its respective bound (LB), while the suc-
cessive-JLFD algorithm can successfully recover failure-induced performance losses and 
achieve the corresponding CRLB (which has the knowledge of failure mask). By fully exploiting 
the failure statistics, the successive-JLFD algorithm outperforms both the l1-JLFD and the 
benchmark, especially for high percentage of failures. The l1-JLFD exploits only the sparsity 
property of failures without using the full statistics, leading to a computationally cheaper but less 
accurate method than the successive–JLFD. 
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Figure 3-16. Localisation RMSEs achieved by the proposed algorithms and the failure-agnostic 
estimator, along with the theoretical limits, with respect to SNR for probability of failure 0.5% 

(left) and 1% (right). 

 

Finally, we provide an illustrative example on failure mask estimates obtained by the proposed 
algorithms in Figure 3-17. It is seen that the successive-JLFD accurately detects the locations 
of failing elements and estimates the respective coefficients while the l1-JLFD fails to detect the 
location of one failure and suffers from high errors in coefficient estimation. 

 

Figure 3-17. Failure mask and its estimates by the proposed algorithms. 

 

Perspective and relation to other WP5 contributions  

We have analysed the performance of RIS-aided localisation in NLoS scenarios under RIS pixel 
failures and demonstrated high sensitivity of localisation to failing elements especially at high 
SNRs and for large percentage of failures. The effectiveness of the algorithms has been cor-
roborated through simulations under different settings regarding SNR and failure probability 
showing a huge impact on other WP5 contributions, where RISs are considered as fully-working 
devices.  

 

#B-8: Joint RIS calibration and user positioning 

Motivation and context 

As described in #A-6, RIS calibration is a crucial step before providing RIS-aided localisation 
and sensing service, and a novel JrCUP algorithm is proposed to tackle this issue practically. 
The three-dimensional (3D) JrCUP localisation problem was first formulated in [LCT+22], which 
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explored the relationship between the channel parameters and localisation unknowns, with the 
corresponding Fisher information matrix derived and analysed. Nonetheless, the adopted pas-
sive RIS in [LCT+22] limits the localisation performance, and the design of an efficient channel 
estimator for JrCUP is still missing. In [GCA+22], a multi-stage solution for the two-dimensional 
(2D) JrCUP problem in a hybrid RIS-assisted system is reported. However, the hybrid RIS setup 
requires an extra central processing unit (CPU) for the receiver and RIS to share observations, 
which increases the system complexity. In this work, we extend the 3D JrCUP problem in 
[LCT+22] and utilizing active RISs to improve localisation performance. Based on the estimated 
channel parameters 𝜽L, 𝜽R, 𝜏L, 𝜏R, and 𝝑, we develop JrCUP algorithms to obtain the 3D posi-

tions of UE, RIS, 1D orientation of the RIS, and the clock offset (𝐩U, 𝐩R, 𝑜3, and Δ). 

Methodology 

Based on the refined channel parameters estimates, the localisation parameters can be recov-
ered by carrying out a 2D search over 𝑜3, and Δ; the rest of the localisation parameters can be 

determined from each search point [𝑜3 , Δ] and a cost metric can be defined to compare the 

fitness of different search points. More specifically, for each candidate search point [�̌�3 ,  Δ̌], 
candidate distances of the LoS path and RIS reflected path can be obtained by the subtraction 
of delay and clock offset and convert to meter. Then, the UE position candidate �̌�U can be ob-

tained via the LoS AoA at the BS, and the RIS position �̌�Rcan be obtained as the intersection 
of the ellipsoid and the line formulated by distance candidates. Then, the cost metric can be 

computed based on the predicted intermediate measurements (�̌�2, �̌�3) and the estimated ones 

(�̂�2, �̂�2) as follows 

𝑓(�̌�3, Δ̌) = ‖[�̌�2, �̌�3]
T
− [�̂�2, �̂�2]

T
‖
2

2

. 

The search point that minimizes the cost metric is chosen as the estimates of (�̂�3, Δ̌), which will 
be used to compute other state parameters. Multiple iterations of search grid refinement can be 
performed to obtain more accurate estimations. 

Results and discussion 

We assess the performance for the localisation parameters estimation. Figure 3-18 presents 

the RMSEs of estimating 𝐩U, 𝐩R, and 𝑜3 versus the received SNR for different numbers (0,1,2,3) 
of grid-search refinement iterations. It can be observed that in the low SNR regions (lower than 
10 dB), the RMSEs stay far from the theoretical bound. In these regimes, increasing the number 
of grid-search refinements does not improve performance. In the high SNR regions (10dB or 
higher), however, we can see that the RMSEs decrease as more search refinements are carried 
out. The RMSEs follow the CRLB closely after two or more search iterations are performed. 
These results confirm that our proposed algorithms can achieve a nearly efficient localisation 
performance at practical SNRs (higher than 10dB). Finally, the refinement dependence of per-
formance presents an unavoidable trade-off between localisation accuracy and computational 
complexity in practice. 

 

Figure 3-18. The evaluation of RMSE of state parameters versus received SNR for different num-
bers (0, 1, 2, 3) of grid-search refinements. 
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We also examine the spatial variability of performance. To this end, we consider three different 
scenarios, i.e., the base scenario, changing the BS position, and changing the RIS orientation. 
The error bounds of 𝐩U, 𝐩R, and 𝑜3 are computed over different UE positions while the BS and 
RIS positions and orientations are kept fixed. We assume the UE to be placed across at 
10mx10m space at a fixed height (1m by default). Figure 3-19 shows the presence of areas with 
extremely high CRLB (yellow areas), with a noticeable variability in the patterns across the dif-
ferent setups. Since these areas with high CRLB yield a poor localisation performance or are 
even unable to perform localisation, which are named as blind areas. 

 

Figure 3-19. Visualization of blind areas under different scenarios. 

 

Perspective and relation to other WP5 contributions  

We have detailed the grid search-based JrCUP algorithm given the estimated channel param-
eters. The simulation results validate the effectiveness of the proposed algorithm, and we should 
be aware of the blind areas while performing JrCUP tasks. 
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#B-9: Multi-RIS-enabled 3D sidelink positioning 

Motivation and context 

The discussion on combining sidelink communication and RIS for low-latency and high-reliability 
communication has been discussed in [GZJ+22], while positioning works appear quite recently 
[CKA+23], [BGV+22] with a major feature of no BSs being involved, resulting in the Tx and Rx, 
both with unknown positions. In [CKA+23], sidelink positioning with RISs is discussed at a high 
level with localisation and sensing scenarios, architectures, and protocols being discussed. The 
work in [BGV+22] requires the cooperation of multiple UEs and RISs with different states (e.g., 
enabled or disabled), and only time-of-arrival information is considered without benefiting from 
the high angular resolution of RISs. Self-localisation has been studied in [KCK+22] where the 
UE is equipped with a full-duplex array, introducing extra hardware cost. In this work, we will 
show that with a sufficient number of RISs (at least two) involved, the 3D absolute positions of 
two single-antenna UEs can be estimated using sidelink communication in the absence of BSs, 
making ubiquitous positioning possible. In this work, we consider a 3D SISO sidelink communi-
cation scenario with two UEs and several passive RIS anchors.  

Methodology 

Based on the estimated channel parameters, namely, delay of the LoS path (𝑑0), delay and 
spatial frequency of all the RIS paths (e.g., 𝑑ℓ, 𝜉ℓ, 𝜁ℓ for the ℓth path), we propose a 3D-search 

positioning algorithm to estimate state unknowns (i.e., position of the transmitter 𝐩T, position of 
the receiver 𝐩R, and clock offset B). For each candidate transmitter position �̌�T, a candidate 

direction vector �̌�R,ℓ from the ℓth RIS to the Rx can be obtained [CZK+23]. Since the RIS states 

are known, we are able to calculate the candidate receiver UE position �̌�R by getting the closest 

point to all the AOD direction vector candidates [BAS97]. Then, the estimated clock offset �̌� can 

be obtained as �̌� = 𝑐�̂�0 − ‖�̌�T − �̌�R‖, and the cost function can be formulated as 

𝐽(�̌�T) = ∑ 𝑤ℓ
𝐿
ℓ=1 |�̌� + ‖�̌�T − �̌�ℓ‖ + ‖�̌�ℓ − �̌�R‖ − 𝑐�̂�ℓ|, 

With 𝑤ℓ as the weighting coefficients. Among all the transmitter UE position candidates, the 
one with the lowest cost will be the estimated position and the rest of the state parameter vec-
tor can be obtained accordingly. From the estimated state vectors, a maximum likelihood esti-
mator (MLE) can be formulated to further refine the localisation results. 

Results and discussion 

The positioning results are shown in Figure 3-20. Similar to the channel estimation results, the 
refinement processes can improve the coarse estimation and attach the derived CRB. 

 

Figure 3-20. Positioning accuracy for different transmit power values. 

 

We further explore the effect of multipath on sidelink positioning by creating two clusters of 
SPs. More details can be found in [CZK+23]. We can see that different SPs properties (e.g., 



 

Document: H2020-ICT-52/RISE-6G/D5.4  

Date: 29/09/2023 Security: Public 

Status: Final Version: 1.0 

 

RISE-6G Public 41 
 

reflection coefficient, positions) affect positioning performance differently, and large transmit 
power could help to combat the multipath. 

 

Figure 3-21. Evaluation of the multipath on the estimator. 

 

We also evaluated the effect of the number of RISs on positioning with four anchors, and the 
PEBs heatmap of a RX moving within an 8mx8m area are shown in Figure 3-22. In general, 
more RISs can increase positioning coverage; however, if the same orthogonal strategy is im-
plemented, more blocks are needed, increasing difficulties in coordinating between these 
RISs and channel parameter estimation. 

 

Figure 3-22. Visualization of RX PEBs for different numbers of RISs. 

 

Perspective and relation to other WP5 contributions  

We have formulated and solved the multi-RIS-enabled 3D sidelink positioning problem. In this 
problem, with the assistance of at least two RISs, the absolute positions of two unsynchronized 
UEs can be estimated via a one-way sidelink communication in the absence of BSs. We dis-
cussed the effect of multipath on positioning performance and evaluated the performance im-
provement with more RISs. However, this work is just the starting point for sidelink positioning 
with simplified scenarios and channel models. 

 

3.4 Set of contributions #C 

Table 3-3 An overview of SLAM and passive object detection contributions 

Architecture Cont. #C-1: RIS-
Enabled Self-lo-
calisation and 

Cont. #C-2: As-
sessing Wire-
less Sensing 
Potential With 

Cont. #C-3: Ra-
dio Sensing 

Cont. #C-4: AI-
based intrusion 
detection using 

Cont. #C-5: RIS-
enabled sensing 
with single- and 
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SLAM with Zero 
Access Points 

Large Intelli-
gent Surfaces 

with Large In-
telligent Sur-
face for 6G 

Intelligent Sur-
faces at 
mmWave 

double bounce  
signals  

Nr BS 0  0 0 1 or more 0 

Nr RIS 1  1 1 Multiple 1 

Nr UEs 1 Single  Multiple  Multiple 1 

UE Mobility Moving Moving Moving  Fixed Fixed 

RIS Type Reflective Receiving Receiving  Reflective Reflective 

Localisation function-
ality placement 

At UE At RIS at RIS  At BS At UE 

Setup        

Uplink/Downlink UL UL  UL UL/DL UL 

Indoor/outdoor/UAV Outdoor Indoor  Indoor Indoor Outdoor/Indoor 

Frequency Band 30 GHz Sub-6 GHz  Sub-6 GHz 60-GHz 28 GHz 

Narrowband/wide-
band 

Wideband narrowband  narrowband narrowband Wideband 

Near field/far field Far field Near-field  Near-field Far-field Far field 

LOS/NLOS (BS-RIS-
UE) 

LOS (UE-RIS-
UE) and NLOS 
(UE-landmark-
UE) 

LOS and NLOS  LOS LOS and NLOS LOS (UE-RIS-UE) 
and NLOS (UE-
RIS-landmark-UE, 
UE-landmark,RIS-
UE, and UE-land-
mark-UE) 

Imperfections or 
other hardware con-
siderations 

- - - Imperfect beam 
patterns 

- 

Measurement type ToA and AoD RSS at RIS Complex signal RSS at BS and 
UEs 

TOA, AOD, and 
AOA 

RIS configuration 
strategy 

Arbitrary Arbitrary Arbitrary Beam sweep Random 

Who collects meas-
urements 

UE RIS RIS  BS and UEs UE 

 

#C-1: RIS-enabled self-localisation and SLAM with zero access points 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

 

#C-2: Assessing wireless sensing potential with large intelligent surfaces  

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

 

#C-3: Radio sensing with large intelligent surface for 6G 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

  

#C-4: AI-based intrusion detection using Intelligent Surfaces at mmWave  

Please refer to D5.2 [RISED52] for an extended description of this contribution. 
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#C-5: RIS-enabled sensing with single- and double-bounce signals 

Motivation and context 

In this work, the separation of the single- and double-bounce signals is studied in the context of 
monostatic sensing [KFC+22]. A full-duplex UE transmits a signal using an antenna array and 
receives the back-propagated signals. As shown in Figure 3-23, the four different types of paths 
are considered:  two single-bounce paths, UE-RIS-UE (shown in blue) and UE-SP-UE (shown 
in red). There are also two double-bounce paths per SP, UE-RIS-SP-UE (shown in black) and 
UE-SP-RIS-UE (shown in green). Higher-order bounces that are more than two are ignored 
since they are much weaker than single- and double-bounce signals. The signal paths i) UE-
RIS-UE, ii) UE-RIS-SP-UE, iii) UE-SP-RIS-UE can be controlled by the RIS while those in iv) 
UE-SP-UE cannot. The signal paths are separated and analysed, and the SP locations are 
estimated. 

 

Figure 3-23. The considered sensing scenario, where a monostatic sensing UE receives the dif-
ferent four types of signal paths. 

 

Methodology 

By adopting the orthogonal RIS codebook design [KSA+22], the received signal is divided into 
controlled and uncontrolled path. The uncontrolled path corresponds to iv) UE-SP-UE, and the 
precoder is designed for the separation of the controlled path. With the directional transmission 
to the RIS, ii) UE-RIS-SP-UE could be observable, and with the transmission with null to the 
RIS iii) UE-SP-RIS-UE could be obtained. The detection probabilities for signal paths are stud-
ied with hypothetical statistics [WS20]. Since each SP generates single- and double-bounce 
signals, the data association is handled by running the two Poisson-Multi-Bernoulli (PMB) filters. 

Results and discussion 

Figure 3-24 shows the complementary cumulative distribution function (CCDF) of detection 
probabilities for all combinations of different SPs locations and UE trajectories. Detection prob-
abilities for the double-bounce signals are lower than that of UE-SP-UE, due to the severe path 
loss at the RIS reflection. 
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Figure 3-24. Detection probabilities for the different signal paths. 

Figure 3-25 shows the sensing performance, evaluated by the Generalized Optimal Sub-pattern 
Assignment (GOSPA) distance. The SP GOSPA distances gradually decrease as the number 
of observable SPs via double-bounce signals increases over time steps while the SPs via the 
UE-SP-UE are always observable. In addition, the measurement noise covariances of the dou-
ble-bounce signals are higher than the UE-SP-UE signal, due to the severe path loss. Therefore, 
the RIS-sensing performance is worse than the non RIS-sensing. 

 

Figure 3-25. Sensing performance, evaluated by the GOSPA distance. 

 

Figure 3-26 shows path losses for the different signal paths. In (a) and (b), the path UE-RIS-UE 
is generally stronger than the double-bounce paths, leading to severe interference (which was 
mitigated in this work by UE beamforming and combining).  In scenario (b), the curves for UE-
SP-UE and UE-RIS-SP-UE are the same as in scenario (a), due to the symmetry of the path 
loss. The difference lies in the UE-RIS-UE path, which is stronger when the UE is close to the 
RIS, but again nearly always dominates and thus interferes with the double-bounce paths. 
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Figure 3-26. Path losses for the different signal paths. 

Perspective and relation to other WP5 contributions  

In this work that is extended from #C1, the double-bounce signals are additionally considered, 
which fundamentally makes sensing even more challenging. To facilitate signal separation, the 
precoder and combiner are designed. The detection probabilities for the separated signals are 
studied. The proposed methods could be used for multi-hypothesis testing in experimental po-
sitioning validations (See e.g., Section 4.1.2). 

3.5 Set of contributions #D 

Table 3-4 An overview of spectrum sensing, RF mapping and fingerprinting contribu-
tions 

Architecture Cont. #D-1: 
Graph-based Ra-
dio MAP Cartog-
raphy for RIS-
aided Fingerprint-
ing Localisation 

Cont. #D-2: 
OnRMap: An 
Online Radio 
Mapping Ap-
proach for Large 
Intelligent Sur-
faces 

Cont. #D-3: RIS-
Aided Wireless 
Fingerprinting Lo-
calisation base 
don Multilayer 
Graph Represen-
tations 

Cont. #D-4: Prac-
tical AI-assisted 
RIS Planning 

Nr BS Multiple N/A Multiple Multiple 

Nr RIS Multiple Single Multiple Multiple 

Nr UEs 1 Multiple 1 Multiple 

UE Mobility Static Static Static Static 

RIS Type reflective / quasi-
active 

active reflective / quasi-
active 

reflective 

Setup     

Uplink/Downlink DL UL DL DL 

Indoor/outdoor/UAV Indoor/outdoor Indoor Indoor/outdoor Indoor 

Frequency Band Any Sub-6 GHz Any Any 

Narrowband/wideband NB NB NB NB 

Near field/far field Far field Near Field Far field Near/Far field 

LOS/NLOS (BS-RIS-
UE) 

LOS/NLOS LOS for RIS-UEs 
link/ NLOS for RIS-

scatteres-UEs 

LOS/NLOS LOS/NLOS 

Measurement type Multiple RSSI Multiple RSSI Multiple RSSI Multiple RSSI 

RIS configuration 
strategy 

Fixed set of sound-
ing RIS profiles 

"Blank" configura-
tions, signals are 
post-processed 

Fixed set of sound-
ing RIS profiles 

Fixed set of sound-
ing RIS profiles 

Who collects meas-
urements 

BS RIS BS BS 
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Synchronisation unsynchronized unsynchronized unsynchronized unsynchronized 

Metric optimised MSE for RF map-
ping; RMSE for lo-

calisation 

Localisation accu-
racy 

MSE for RF map-
ping; RMSE for lo-

calisation 

SNR and CRB 

 

#D-1: Graph-based radio map cartography for RIS-aided fingerprinting localisation 

Please refer to D5.2 [RISED52] for an extended description of this contribution. 

 

#D-2: OnRMap: An Online Radio Mapping approach for large intelligent surfaces 

Motivation and context  

Emerging technologies in beyond fifth generation of telecommunications demand sensing and 
localisation capabilities along with communications systems. One of the candidates’ topologies 
for indoor systems is the Large Intelligent Surfaces (LISs), a large antenna array capable of 
transmitting and receiving electromagnetic signals and covering large areas. Such a character-
istic is an enabler for high-resolution radio mapping (RMap), i.e., translating electromagnetic 
signals into an environment representation through radio maps (RMs). We illustrate an indoor 
environment with a LIS covering the whole ceiling of a room in Figure 3-27. 

 

Figure 3-27. System model [HLS+23] 

Methodology 

The objective is to detect and localize standing humans, namely passive users, in a scenario 

containing metallic objects by performing RMap using K active users (AUs) training signals, i.e., 

orthogonal pilots. To map the environment, we rely on the NLoS signals, which represent the 

bouncing in the R passive elements (PEs), while the LoS gives us the AUs localisation straight-

forward in RMap. The framework is composed of i) estimation of LoS and NLoS through a 

matched filter (MF) and robust component analysis (RPCA), ii) separation of the NLoS by trans-

lating the output data of RPCA using k-means and boundaries estimation algorithm, and iii) 

inference by density-based spatial clustering of applications with noise (DBSCAN) and correlat-

ing the energy contained in NLoS estimation. We refer to the whole process as OnRMap. 

The interested reader can refer to [HLS+23] for all the details on the system model, problem 

formulation, and algorithmic solutions. 

Results and outcomes 

Figure 3-28 presents a single realization visual output of the OnRMap steps. The algorithm 

accuracy and detection rate were evaluated through a thousand Monte Carlo iterations and 

compared to [CVR+23] method. The detection rate and accuracy are shown in Figure 3-29. 

Compared to the reference, we highlight that OnRMap does not rely on a training phase. Thus, 

this method suits dynamic environments and needs minimal a priori knowledge of the environ-

ment. The main trade-off is in the detection rate versus localisation accuracy, where the pro-

posed method misses more detections while having higher accuracy than the reference. At last, 
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Figure 3-30 shows the complementary cumulative distribution function in detection rate versus 

number of AUs. 

 

Figure 3-28. Example of application of OnRMap [HLS+23] 

 

Figure 3-29. Average localisation accuracy and average detection rate for different number of 
AUs [HLS+23]. [4] refers to [CVR+23]. 

 

Figure 3-30. CCDF of the number of correctly detected humans for different numbers of AUs 
[HLS+23] . 

Perspective and relation to other WP5 contributions  

Sensing and localisation are key enabler for 6G technologies. The proposed framework pro-

vides an online and robust to dynamic environments method to detect humans using a LIS. The 

position of the passive users retrieved by this contribution can be used as side-information to 

increase the estimation accuracy of other WP5 contributions, by, for example, removing the 

effects of the passive users in an active users localisation algorithm. 
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#D-3: RIS-Aided Wireless Fingerprinting Localisation based on Multilayer Graph Repre-

sentation 

Motivation and context 
Recently, WFL empowered by RISs has emerged as a powerful technique for enhancing the 
accuracy of mobile user localisation. WFL exploits the flexibility of RISs to generate a set of 
signal fingerprints, which are compared to the ones contained into pre-stored radio maps for 
localisation purposes. This avoids the need of having a large set of known anchors, such as 
base stations or access points, to create enough fingerprints for user localisation and thus re-
ducing the overall cost of the system. However, many approaches proposed in literature, e.g., 
[NGG20] [ZWD+22], require access to the full radio maps, which is typically a costly and time-
consuming process, as it needs to perform many measurements at different locations. To cope 
with the possible lack of Received Signal Strength Information (RSSI) at certain locations, in the 
deliverable D5.2 [RISED52], has been introduced a method for RF map cartography which in-
terpolates several RF maps (one for each fingerprint) from a subset of collected measurements 
exploiting graph signal processing tools. 
In this deliverable, to improve localisation accuracy, a novel method for WFL empowered by 
RISs is proposed, where the RSSI measurements are modelled as signals defined over a multi-
layer graph, which encodes data similarities across both the spatial and the fingerprints domains 
[SDB23]. Differently from graph-based approach [R17], the RISs are explicitly considered either 
in the construction and in the interpolation of the radio maps. Exploiting model-generated fin-
gerprints, we can learn the multilayer graph topology that enables the use of graph-based sam-
pling methods to recover the full radio map from the observation of subsets of measurements. 
 
Methodology  
The fingerprinting-based strategy proposed in this work aims to retrieve radio maps from RSSI 
measurements and then use these maps for mobile user localisation. Exploiting the intra- and 
inter-layers connectivity grasped by the multi-layer graph, first is found a bandlimited represen-
tation of the graph signal enabling the use of graph sampling theory. Then, the radio maps are 
recovered from the observation of a restrict number of measurements (samples). Specifically, 
the proposed learning and localisation strategy consists of the following three-steps: 

1) Learning Multilayer Graph and Signal Representation. Assuming the radio map signal 
model as in [WD20], [GAT+22], a set of training RSSI vectors is generated. These vec-
tors are used to learn the structure of the multilayer graph, which incorporates the cor-
relation of these model-generated signals, jointly in the spatial and fingerprints domains. 
Then, sparse graph signals representations are derived by solving a basis pursuit prob-
lem which keeps the representation error below a required accuracy threshold.  

2) Sampling and Recovering of the RSSI Radio Maps. Given the learned multilayer graph, 
Max-Det greedy sampling strategy in [TDB16] is applied to select a subset of nodes from 
which to gather observed field measurements. Then, exploiting the signal bandlimited-
ness enforced by the sparse representation, the network operator may recover the full 
maps from the RSSI sampled measurements by using graph sampling theory [TDB16]. 
It has been shown, through extensive numerical results, the robustness of the proposed 
strategy, assuming that the fingerprints correlations between the layers of the multilayer 
graph are not significantly varying with respect to the model-generated maps. The de-
veloped method enables to recover the radio maps from a reduced number of sensors 
by providing the positions where these sensors should be placed. This implies that only 
a reduced number of measurements instead of the overall maps need to be collected by 
the network operator in order to recover the full maps.   

3) Mobile user localisation. The recovered maps can be then used for WFL applications.  
Specifically, the set of field measurements collected by the UE at some unknown posi-
tions are compared with the recovered maps. To estimate the UE position several criteria 
can be adopted, as for example a minimum distance (MD) or a maximum correlation 
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coefficient (MCC) criterion [NGG+21]. To improve localisation accuracy, it is also applied 
a k-nearest neighbour (kNN) method by computing the estimated UE location as the 
average of the locations corresponding to the first k best coefficients of the MD or MC 
criteria. 

  
Results and outcomes 
To assess the effectiveness of the proposed methods, the 2D propagation scenario is consid-
ered, as illustrated in Figure 3-31, composed of a single BS (red square) and two RISs (green 
squares), each modelled as a uniform linear array with M=25 elements spaced by λ/2. The BS 
emits signals at frequency of 1GHz with a transmission power equal to 5dB. The multilayer 
graph is composed of P=4 layers and we associate with each layer the RSSI fingerprint gener-
ated by a given RIS configuration. The field is observed over an area of 10x20 m2 at locations 
corresponding to the N=150 nodes of a grid graph, placed at a distance of 1m. 
First, the multiplayer graph can be learned from the model-generated signals, and then a sparse 
radio map representation can be found using as bases the eigenvectors of the inferred multi-
layer graph. To assess the trade-off between sparsity (compression) and accuracy, in Figure 
3-32 it is reported the average sparsity of the signals versus the radio map normalized mean 
squared error (NMSE), assuming, for this experiment, the observed signal to be noiseless. The 
proposed multi-layer approach is compared with a graph-based recovering method that consid-
ers as signal basis the eigenvectors of the Laplacian matrix associated to a single layer. It can 
be observed as multi-layer graphs provide a remarkable better trade-off between sparsity and 
signal estimation accuracy than graph-based method. This gain is due to the capability of the 
multi-layer topology to encode the interactions among multiple RSSI fingerprints. 
Furthermore, to better investigate the impact of the estimation error value on the RSSI map 
recovering, in Figure 3-31 is reported an example of the true original field (left plot) and recov-
ered map (right plot) obtained using an average number of samples for layer equal to 60 and 
with a signal NMSE=0.19. It can be noticed the goodness of the recovered field by using only 
the 40% of the overall layer measurements. 
To evaluate the effectiveness of the proposed RIS-aided fingerprint localisation, the MD and 
MCC localisation strategies are applied by using the recovered radio maps. The mobile users 
are randomly placed within the area of interest, and they observe a noisy RSSI field affected by 
Gaussian noise with zero-mean and standard deviation σ. Then, in Figure 3-33 is shown the 
localisation mean error, averaged over 100 random user positions and over 100 noise random 
realizations, versus σ and for different values of the number P of RIS configurations used in the 
localisation phase. The kNN-based localisation strategies are applied with k=4 neighbours by 
comparing the two localisation strategies MD and MCC for the scenario in Figure 3-31. It can 
be noticed as, in the observed scenario, the MD strategy reaches better performance than the 
MCC method, by keeping close to the case where the true maps are used for UEs localisation. 
As further numerical example, Figure 3-34 illustrates the localisation mean error versus the 
number of RIS configurations for different noise variance. It can be observed the high robust-
ness of the method to the noise degradation.  
Finally, in Figure 3-35 our proposed multi-layer graph method is compared with the graph-based 
learning strategy proposed in [R17], and with a kernel-based signal interpolation that exploits a 
standard Gaussian kernel. The mean localisation error versus the number of the RIS configu-
rations is reported in the noiseless case and by applying the MD criterion. For all methods, is 
used a number of average samples over each graph (layer) equal to 20. It can be noticed that 
the proposed multi-layer-based localisation method exhibits considerable performance gain 
compared with both the graph-based method in [R17] and the kernel-based interpolation ap-
proach. This accuracy enhancement is due to the capability of the proposed strategy to exploit 
the fingerprint domain, thus keeping its performance very close to the ideal case where the true 
maps are employed for localisation. 
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Figure 3-31. Observed (left) and learned (right) RSSI field. 

 

 
 

Figure 3-32. Trade-off sparsity vs NMSE. 

 

 
 

Figure 3-33. Localisation mean error vs σ for different number of RIS configurations. 
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Figure 3-34. Localisation mean error vs the number of RIS configurations,  

for different noise variance. 

 

 

Figure 3-35. Localisation error vs. the number of RIS configurations. 

  
 
Perspective and relation to other WP5 contribution 
Since this work proposes a general method for EM radio map interpolation, it can be used also 

in other WPs for spatial information-based resource allocation to, e.g., reduce EMF absorption 

within specific regions while maximizing communication performance in other areas. 

 

#D4: Practical AI-assisted RIS planning 

Motivation and context 
In our work, we propose D-RISA, namely Deep RIS-Aware network deployment and planning, 
as a novel deep reinforcement learning (DRL)-based solution to enable practical installation of 
RISs in the field, using a raytracing simulation of the target area. 
We introduce a paradigm shift in the use of DRL to solve RIS deployment problems by not 
aiming at producing a DRL agent able to solve any problem instance, but rather tailoring the 
training of D-RISA to the specific problem at hand, making it less demanding w.r.t. the available 
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literature while avoiding the discretization of the solution space and thus increasing the solution 
scalability. 
In particular, the contributions can be summarized as follows: we i) translate the RIS deployment 
problem into a DRL problem by means of the bespoke space and action spaces design, ii) 
identify the minimum SNR that directly translates into maximum localisation accuracy as a fea-
sible metric to be computed by a custom-made ray tracing simulator to feed the DRL training 
process, iii) make use of the D-RISA DRL agent training phase as an exploration tool to find the 
best deployment solution, avoiding the need for a complete viable agent, iv) showcase the rapid 
convergence of the agent solution and v) benchmark D-RISA against the State-of-the-Art (SOA) 
as well as exhaustive approaches, demonstrating outstanding performance while emulating the 
indoor scenario of a real environment, namely Rennes Railway Station in France. 
 
Methodology  
We tackle the problem of efficiently deploying RISs in a known environment. We extend a cur-
rently existing network deployment with RISs to eliminate coverage dead zones. We consider 
the environment of the Rennes railway station hall, operated by the French Société Nationale 
des Chemins de fer Français (SNCF), and visualized in Figure 3-36. We try to alleviate in par-
ticular the dead zone problem. The current deployment of BSs in the Rennes station has several 
areas with connectivity problems due to the low SNR achieved. We identify and set Test Points 
(TPs) on those locations and alleviate the problem with our proposed solution. Specifically, we 
make use of a custom-made ray tracing engine to simulate any proposed deployment in the 
scenario while accounting for its current network infrastructure, provided by a major European 
network operator. As the ray tracer outputs the values of the objective function (the minimum 
SNR across all the TPs defined, as described in Section III) we train a DRL solution by using 
them as rewards.  
 

 

Figure 3-36. D-RISA’s building blocks showing the training process for a given frame. In the 3D 
map, the candidate sites (CSs) for the RIS deployment are shown in green, the BSs in blue, and 

test points (TPs) in red. 

 
We showcase the main building blocks of our proposed solution, itemizing the operations re-
quired for a single training cycle iteration. Here we only assess the main components of D-RISA, 
namely i) a 3D model of the scenario, ii) a ray tracer running on such scenario and capable of 
evaluating candidate deployment solutions, iii) a model for the RIS gain, which we use in com-
bination of the ray tracer to numerically evaluate any solution, iv) a Deep Q-Learning (DQL) 
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agent, which takes as input a given solution and decides the best among the different potential 
changes on it, purposely with the long-term goal of improving our objective, and v) the training 
process of said agent, following the principles of Deep Q-learning from Demonstrations (DQfD). 
We would like to underline that DQL is only one flavour of DRL and that D-RISA can be readily 
extended to other DRL techniques with minimal modifications. 
 
Results and outcomes 
We consider the Rennes railway station scenario. D-RISA does not impose a restriction on the 
existing infrastructure, and increasing the number of pre- deployed BSs has a negligible impact 
on the computational costs. Nevertheless, for this work, we reproduce in the ray tracer the cur-
rently existing installation of radio equipment in the location by the operator. Thanks to this 
parallelism, we are able to assess that current coverage problems are reproduced in our simu-
lations, confirming their predictive capability, and we can obtain practically useful and applicable 
solutions. This infrastructure is characterized by M = 2 existing BSs with a transmit power P = 
28 dBm operating at f = 26 GHz, and select N = 10 CSs, and T = 13 TPs. The coverage of the 
area, the positions of the existing BSs and their properties are provided by the European major 
network operator serving the station. The TPs are scattered in the area, focusing on the sectors 
wherein existing BSs are not able to provide adequate coverage, while the CSs are handpicked 
in architecturally suitable places, both in areas directly surrounding the TPs and outside the 
immediate vicinity, as depicted. The ray tracer uses a 3D model of the station, which reproduces 
the most prominent architectural features of the environment. The model is composed of a total 
of 579 triangular surfaces. It uses the SBR method to find all possible paths between any pair 
of given points. For simplicity, we use a single material for the whole environment as a reference 
to compute the losses at each reflection. The material properties are in agreement with the 
International Telecommunication Union (ITU) values for the permittivity and conductivity of con-
crete at f = 26 GHz, i.e., real part of relative permittivity Re(εr ) = 5.31, and conductivity σ = 
0.4557 S/m. To compute the overall effect of the deployment of RISs in our scenario beyond 
the chosen test points, we also analyse the whole surface at a height of 1.5m. 
 

 

Figure 3-37. SNR analysis considering the current arrangement (left) and the SNR achievable 
with L = 6 RISs (right). 

 
To produce such heatmaps, we model the RISs as isotropic scatterers. We can see the differ-
ence between the current deployment without RISs in Figure 3-37. We employ a multi-layered 
perceptron (MLP) neural network (NN) design with 2 hidden, fully connected layers of 32 neu-
rons activated via a rectified linear unit (ReLU) function. The learning rate and the future reward 
reduction are respectively set to η = 0.00025 and γq = 0.99, which are optimized by means of 
the Adam algorithm. The training period of the primary network NN is TT = 4 complete frames 
and the period between updates of the secondary network NN’ (i.e., by copying NN) is TST = 
500 complete frames. We apply our solution to the described scenario, and put it side-by-side 
with the following benchmarks: i) the solution obtained by exhaustive search (ES), ii) the solution 
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obtained by ES considering clusters of TPs instead of individual TPs, drastically reducing the 
number of possible associations and allowing us to extend the ES up to L = 4, iii) the solution 
obtained by means of the State-of-the-Art RISA, which is based on FP, and iv) a statistical 
average of random solutions as previously obtained in the same scenario. D-RISA outperforms 
all other solutions and matches the ES approaches in terms of minimum SNR (i.e., maximum 

localisation accuracy) at a much lower computational cost. 
 

 

Figure 3-38. D-RISA performance against benchmark methods and State-of-the-Art RISA for a 
different number of deployed RISs in terms of minimum SNR. 

 
D-RISA training. We observe an increasing trend in solution performance as the agent keeps 
building its ability to improve deployments. As the training process ends with an exploitative 
behaviour, the high values of the best normalized minimum SNR during each episode suggest 
that the agent has learned a successful strategy to solve the problem even without exploratory 
actions. In some instances, the agent might be unsuccessful in solving the problem at the train-
ing end just by leveraging on its own knowledge (exploitation). Nonetheless, the overall training 
process is still able to produce a good solution for the RIS deployment problem by combining 
the exploration and exploitation strategies. If the training time is extended past solution conver-
gence, the relative improvements on the best normalized SNR decrease: the fully trained agent 
does not further improve its output by adding more training effort. This hints at the fact that the 
most value of D-RISA is obtained early in the training, thus allowing for shorter training times 
and reducing the computational complexity. 
 
Perspective and relation to other WP5 contribution 
This contribution proposes an AI-based method for RIS planning pursuing optimized sensing 
and localisation. It can be used as a model interplaying with WP3 contributions as well as with 
control mechanisms proposed in D5.3 [RISED53]. 
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4 Practical algorithms for laboratory demonstrations and field trials 
of RIS-aided localisation, mapping, and sensing 

In this section, we detail some concrete experimental setups with corresponding scenarios that 
will be considered in WP7 for both the laboratory demonstrations and the field trial experiments 
of WP5 localisation and sensing algorithms. As for the final results of these experimental vali-
dations, they will be accounted in the final D7.3 deliverable. 

The mapping of the lab demos and field trials to the contributions from Section 3 is provided in 
Table 4-1.   

Table 4-1 Relation between demos and trial to the contributions. 

Demo/ trial Related contributions Comments 

Demo at 3.7 GHz: RIS-aided finger-
printing positioning 

Cont. #D-3: RIS-Aided Wireless Finger-
printing Localisation based on Multilayer 
Graph Representations 

The proposed WFL algorithm is based 
on radio maps, built on lab measure-
ments, and corresponds to the final part 
of Cont. #D-3, where collected finger-
prints are replaced with a radio map re-
covered applying multilayer graph topol-
ogy methods. 

 

Demo at 27 GHz: mmWave RIS with 
SAGE algorithm 

Cont. #A-1:  Far-field ToA and AOD es-
timation of a signal reflected by a RIS 

Cont. #B-2: RIS-Enabled SISO Localis-
tion under User Mobility and Spatial-
Wideband Effects 

 
Cont. #C-5: RIS-enabled sensing with 
single- and double bounce-signals 

Cont. #C-5 is applied to generate multi-
ple hypotheses of the UE location. 

Demo at 60 GHz: RIS-Aided Self-UE Lo-
calisation 

Cont. #A-1:  Far-field ToA and AOD es-
timation of a signal reflected by a RIS 
 
Cont. #B-3: RIS-Enabled Self-Localisa-
tion: Leveraging Controllable Reflections 
with Zero Access Points 

Cont. #C-1: RIS-Enabled Self-localisa-
tion and SLAM with Zero Access Points 

 

Online field trials Cont. #A-1:  Far-field ToA and AOD es-
timation of a signal reflected by a RIS 

Cont. #B-2: RIS-Enabled SISO Localisa-
tion under User Mobility and Spatial-
Wideband Effects 

Cont. #D-3: RIS-Aided Wireless Finger-
printing Localisation based on Multilayer 
Graph Representations 

Cont. #D-3 is a back-up solution. 

4.1 Lab-demos 

4.1.1 Demo at 3.7 GHz: RIS-aided fingerprinting positioning 

The purpose of this demonstration is to show the feasibility of localizing a UE with the aid of a 
RIS and a BS, even in a cluttered environment at low carrier frequencies.  

Measurements will be collected in an indoor office environment. We consider that the BS (Tx) 
and the RIS are in two different fixed locations, while the UE (Rx) can assume L different posi-

tions inside a specific area 𝐴.  
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The RIS-aided wireless fingerprinting localisation process is performed in two phases: 

 We collect the RSSI values received by the UE to form two fingerprint databases of the 
position grids. The first database (DB-DL) is established in a scenario without the RIS, 
where the transmitter (BS) and the receiver (UE) communicate through a direct link. We 
collect a vector of L fingerprints �̃� = [�̃�1, … , �̃�𝐿] , corresponding to each position l ∈
[1, . . , 𝐿]assumed by the UE in the location grid. The second database (DB-RIS) is com-
piled in a scenario where no direct link can be established between the BS and the UE 
(blockage event), and we leverage a RIS-aided communication link. The BS transmits 
continuous pilot signals, while the RIS cycles through M different configurations. Then, 
for each position l assumed by the UE, we collect the RSSI values exploring each m ∈
[1, . . , 𝑀] RIS configuration, forming a fingerprints matrix �̂� = [�̂�1, … , �̂�𝑀]

𝑇 ∈ 𝑅𝑀×𝐿. 

 During the second phase, the UE is placed at an unknown position 𝑥 ∈ 𝐴. Thus, we 
collect from the BS a single RSSI value received �̃�𝑥, in case of DB-DL, or a vector of M 

signal strength measurements �̂�𝑥 = [�̂�1, … , �̂�𝑀]
𝑇, in case of DB-RIS. The localisation is 

performed by comparing the current RSSI received in 𝑥 with the values stored in the 
databases. To estimate the UE position, several criteria can be adopted, as for example 
a minimum distance (MD) or a maximum correlation coefficient (MC) criterion [NGU21]. 

In particular, we can find the most likely location l* as follows. Denoting by �̃�(𝑙) the l-th 

column of the matrix �̃�, the MD method returns the optimal position 𝑙∗of the UE, in case 
of database DB-RIS, such that it holds the following 

𝑙∗ = arg𝑚𝑖𝑛𝑙∈[1,𝐿] 𝑑𝑝(𝑙) ≔ ‖�̃�(𝑙) − �̂�𝑥‖𝐹 

while the MC criterion takes a decision for the UE position 𝑙∗according to the following 
rule  

𝑙∗ = arg𝑚𝑎𝑥𝑙∈[1,𝐿] 𝜌(𝑙) ≔
�̃�(𝑙)𝑇�̂�𝑥

‖�̃�(𝑙)‖
𝐹
‖�̂�𝑥‖𝐹

. 

The same criteria can be applied in case of database DB-DL by comparing �̃� and  �̃�𝑥.To 
improve localisation accuracy, we can apply a kNN method hinging on the MD and MC 
strategies. Specifically, we sort the coefficients 𝑑𝑝(𝑙)and 𝜌(𝑙) in increasing and de-

creasing order, respectively, and for each strategy we compute the estimated UE loca-
tion as the average of the locations corresponding to the first k coefficients. 

The performance in the location estimate is measured through the RMSE, with the intention to 
show that fingerprinting localisation based on DB-RIS is better than the one based on DB-DL. 

 

4.1.2 Demo at 27 GHz: mmWave RIS with SAGE algorithm 

The experimental setup for this measurement campaign relies on a VNA-based mmWave chan-
nel sounder and includes a Transmit-RIS (TRIS) on the transmitter side and a Reflective-RIS 
(RRIS) positioned between the transmitter and the receiver (RX), both equipped with 1-bit ele-
ment-wise phase control. Referring to the RRIS as "RIS" and the TRIS as "BS" for simplicity, 
the measurement acquisition involves azimuthal beam scanning by the BS from -60° to +60° in 
5° increments while the RRIS remains inactive. Following this, the BS illuminates the activated 
RRIS with a static beam, which then undergoes beam sweeping with the same orientation con-
figurations. We harness the high-resolution Space-Alternating Generalized Expectation-maxi-
mization (SAGE) algorithm which allows us to discern crucial properties of Multipath Compo-
nents (MPCs), such as their delays, Angles of Arrival (AoAs), and associated gains. The MPCs 
extracted pertain to both the direct path between the BS and UE, and the reflected path via the 
RIS before reaching the UE. Prior to the application of SAGE, meticulous characterization and 
calibration of the impact of cables and RF components within the acquisition chain are carried 
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out. Once parameters are extracted, the focus shifts to localisation. Specifically, AoD estimates 
are deduced through a combined process of beam sweeping at both the BS and the RIS and 
the extraction of MPCs. 

4.1.3 Demo at 60 GHz: RIS-Aided Self-UE Localisation 

This setup involves a UE (a radar transceiver) and a RIS. The objective is to localise the UE 
with aid of the RIS, using backscattered signals from the RIS.  

Channel Parameter Estimation: The UE transmits the chirp signals. When the UE receives the 
back-propagated signals including the loop-back propagation from the RIS, the beat signals at 
an intermediate frequency are observable. The observed signals are analysed with the differ-
ent frames, where 1 frame consists of 128 chirps (slow-time domain), and 1 frame consists of 
600 samples (fast-time domain). By the 2D FFT of each frame, we generate the range-Dop-
pler map and determine the range and Doppler pairs to the targets, including the RIS. Over 4 
RX antennas, 4 complex values corresponding to the estimated range and Doppler can be se-
lected, and 1D FFT is adopted to estimate the AoD of targets. 
UE Localisation with Data Association: In the range domain, the three largest peaks could be 
detected. The first is the self-interference at the UE, the second is the physical reflection from 
the RIS, and the last is the loop-back signal from the RIS. Using the second and third peaks 
with the known RIS location, we determine the parameters associated with the RIS. Then, the 
UE location is estimated by the geometric relations or 2D search with the ML estimator. 

4.2 Online field trials  

The field-trial demonstration will be performed in a real scenario to validate how a 3D UE lo-
calisation process can be realized. In particular, the field-trial demonstration will take place in 
CRF premises (Turin) to showcase specific kitting operations where positioning is of para-
mount importance for AGV operations. Final details will be provided in the deliverable D7.3. 
The testing scenario will include 2 mmWave RISs that will be exploited to infer the target posi-
tion via RSRP measurements.  

Hardware equipment and main system specifications  

The current system set-up is composed of: 

 BS: a commercial Ericsson 5G NSA BS, equipped with the RF module AIR5322 operat-

ing at N258 band (licensed TIM frequency band is 26.9-27.1 GHz). The 5G BS antenna 

array can be configured to force the transmission of a specific broadcast beam among 

24 ones available: azimuth angle ranges between -60 and +60° is split into 3 different 

beams, while elevation angle ranges between -15 and +15° and it is spit into 8 different 

beams; 

 5G-Core: TIM 5G commercial core network to realize a full end-to-end 5G connection 

with the UE equipped with a live network SIM; 

 UE terminal: a 5G CPE by ZTE, which allows to read SS-RSRP values in real-time while 

being connected to the BS/5G network; 

 R-RIS: the RIS is the same as the one already used for in-lab offline demonstration, 

whose element phase distribution is optimized at 27 GHz. The RIS can be configured to 

steer the reflected beam toward specific directions. 

In addition, a VIAVI signal analyser is provided to support setting up operations. 

Operational scenario 

The localisation principle can be summarized as follows (see Figure 4-1): 
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 A BS transmits signals sequentially towards each R-RIS, The BS has location xBS, RIS-

A has location xA and orientation RA (similarly for RIS-B). The user has location xUE.  

 Both RISs can be dynamically configured to change the reflected signal direction (direc-

tional beams) and sweep over a large area where the user might be located.  

 During the time the BS transmits signals towards RIS-A, RIS-A applies directional beams 

(say f1,…,fN) towards a set of possible UE locations (say x1, …, xN), according to a de-

terministic pattern enabling to scan the environment in azimuth.  

 For each beam, the UE measures the received power (say, p1, …, pN for RIS-A and q1, 

…, qN for RIS-B). Note that the locations are defined in a global frame of reference, so 

that a beam towards location xi in a global frame of reference is considered to be towards 

RA
T

 (xi-xA), in the local frame of reference of the RIS-A (similarly for RIS-B). Also note 

that the transmit power of the BS is set to be minimum. 

 For each candidate point in the set of possible UE locations, a controller connected to 

both RISs and UE computes a weight wi = (pi+qi)/(j pj+qj), based on received powers. 

Then, the pairs (wi,xi) represent a probability mass function of the UE location, which 

somehow accounts for the probability that the UE lies in each candidate test/trial loca-

tion. 

 

 

Figure 4-1: Principle of the online field trial for single-BS RIS-aided single-BS localisation within 
commercial network (the so-called “trial” locations correspond to the tested candidate UE loca-

tions) [KDA+22]. 
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5 Conclusions 

Reconfigurable Intelligent Surfaces (RISs) possess significant potential for exerting control over 
radio wave propagation and manipulating the geometry of multipath-aided localisation issues. 
This capability potentially empowers the realization of highly precise localisation and sensing, 
radio-frequency mapping, and the detection of obstacles and activities. This makes RISs par-
ticularly well-suited for scenarios where traditional architectural setups and deployments fall 
short. However, the integration of RISs represents a paradigm shift that necessitates the devel-
opment of new techniques and algorithms. 

This deliverable is to address this pressing need. It serves as a comprehensive guide, outlining 
innovative algorithms for channel estimation, localisation, and sensing designed to cater to a 
wide spectrum of scenarios. It plays a pivotal role in bridging the gap between WP5 and the 
expected RISE-6G project results, thereby acting as a final specification. These algorithms and 
techniques serve as building blocks for the advancement of RIS technology within the project, 
marking a significant step towards unlocking the full potential of RISs in next-generation wireless 
communication systems. 
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